Improving the electrochemical performance of anatase titanium dioxide by vanadium doping as an anode material for lithium-ion batteries

被引:82
|
作者
Ly Tuan Anh [1 ]
Rai, Alok Kumar [1 ]
Trang Vu Thi [1 ]
Gim, Jihyeon [1 ]
Kim, Sungjin [1 ]
Shin, Eui-Chol [1 ]
Lee, Jong-Sook [1 ]
Kim, Jaekook [1 ]
机构
[1] Chonnam Natl Univ, Dept Mat Sci & Engn, Kwangju 500757, South Korea
基金
新加坡国家研究基金会;
关键词
Titanium dioxide; Vanadium; Semiconductor; Anode; Lithium ion battery; NANOTUBES; INTERCALATION; COMPOSITES; LI4TI5O12; ARRAYS; RUTILE; WATER;
D O I
10.1016/j.jpowsour.2013.06.080
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Undoped and 2 wt% vanadium (V5+) doped TiO2 samples are prepared in polyol medium by lowtemperature solvothermal method. The as-prepared samples are annealed at 400 degrees C for 5 h in an air atmosphere to increase the crystallinity. The XRD pattern shows that pure anatase TiO2 is formed in both the doped and undoped samples. The maximum sizes of nanoparticles are found to be 300 nm and 15 nm with spherical shaped morphology for undoped TiO2 and V5+ doped TiO2 samples respectively. In addition, 2 wt% V5+ doped sample exhibits excellent electrochemical performance with high reversible specific capacity and excellent rate capability compared to the undoped case. This improvement can be attributed to the substitution of the Ti4+ ions by V5+ ions in the TiO2 lattice and create more Ti4+ vacancies in the lattice. This action may lead to the generation of apparently more number of free holes in the doped p-type semiconductor. Therefore, the increased hole concentration in the valence band can contribute to the electrical conductivity of the doped sample. Vanadium doping also influences the sample crystallinity and reduces the particle size, which provides a larger active surface area than that of undoped TiO2. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:891 / 898
页数:8
相关论文
共 50 条
  • [31] Research Progress on Anatase Titanium Dioxide as Anode Material for Sodium-ion Batteries
    Zhao H.
    Qi Y.
    Ren Y.
    Cailiao Daobao/Materials Reports, 2023, 37 (03):
  • [32] Electrochemical Activity of Black Phosphorus as an Anode Material for Lithium-Ion Batteries
    Sun, Li-Qun
    Li, Ming-Juan
    Sun, Kai
    Yu, Shi-Hua
    Wang, Rong-Shun
    Xie, Hai-Ming
    JOURNAL OF PHYSICAL CHEMISTRY C, 2012, 116 (28): : 14772 - 14779
  • [33] Carbon-coated vanadium selenide as anode for lithium-ion batteries and sodium-ion batteries with enhanced electrochemical performance
    Yang, Xinhui
    Zhang, Zhian
    MATERIALS LETTERS, 2017, 189 : 152 - 155
  • [34] Electrochemical Performance of Li2FeSiO4 as Anode Material for Lithium-ion Batteries
    Liang, Er-Qian
    Song, Li-Jun
    Liu, Shuang-Shuang
    Guo, Yuan
    Yu, Bao-Jun
    Wang, Cheng-Yang
    Li, Ming-Wei
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2017, 12 (06): : 5320 - 5330
  • [35] Effect of iodine treatment on the electrochemical performance of natural graphite as an anode material for lithium-ion batteries
    Wang, HY
    Yoshio, M
    JOURNAL OF POWER SOURCES, 2001, 101 (01) : 35 - 41
  • [36] Electrochemical performance of arc-produced carbon nanotubes as anode material for lithium-ion batteries
    Yang, Shubin
    Song, Huaihe
    Chen, Xiaohong
    Okotrub, A. V.
    Bulusheva, L. G.
    ELECTROCHIMICA ACTA, 2007, 52 (16) : 5286 - 5293
  • [37] Synthesis, characterization and electrochemical performance of LiNiVO4 anode material for lithium-ion batteries
    Han, Xiaoyan
    Tang, Wenchao
    Yi, Zonghui
    Sun, Jutang
    JOURNAL OF APPLIED ELECTROCHEMISTRY, 2008, 38 (12) : 1671 - 1676
  • [38] Electrochemical Performance of SnO2/ Graphite Nanocomposites as Anode Material for Lithium-Ion Batteries
    白雪君
    王彪
    程旭
    江建明
    JournalofDonghuaUniversity(EnglishEdition), 2015, 32 (03) : 379 - 383
  • [39] Synthesis, characterization and electrochemical performance of LiNiVO4 anode material for lithium-ion batteries
    Xiaoyan Han
    Wenchao Tang
    Zonghui Yi
    Jutang Sun
    Journal of Applied Electrochemistry, 2008, 38
  • [40] Preparation and Electrochemical Performance of Si@C/SiOx as Anode Material for Lithium-ion Batteries
    Yang Tao
    Li Xiao
    Tian Xiao-Dong
    Song Yan
    Liu Zhan-Jun
    Guo Quan-Gui
    JOURNAL OF INORGANIC MATERIALS, 2017, 32 (07) : 699 - 704