A geometric constraint solver for 3-D assembly modeling

被引:8
|
作者
Peng, XB [1 ]
Lee, K
Chen, LP
机构
[1] Seoul Natl Univ, Dept Mech Design & Prod Engn, Seoul, South Korea
[2] Huazhong Univ Sci & Technol, Sch Mech Sci & Engn, Wuhan 430074, Peoples R China
关键词
assembly; constraint decomposition; constraint graph; geometric constraint; numerical solving;
D O I
10.1007/s00170-004-2391-1
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we propose a geometric constraint solver for 3-D assembly applications. First, we give a new geometry and constraint expression based on Euler parameters, which can avoid singular points during the solving process and simplify constraint types. Then we present a directed graph based constructive method to geometric constraint system solving that can handle well-, over- and under-constrained systems efficiently. The basic idea of this method is that it first simplifies the constraint graph by pruning those vertices which have only in-arcs from the graph and then reduces the size of strongly connected components (SCCs) left in the graph by DOF-based analysis. The method can solve all kinds of configurations including closed-loops. After that, we apply a hybrid numerical method of Newton-Raphson and Homotopy to solve under-constrained systems. The hybrid method makes use of the high efficiency of the Newton-Raphson method as well as the outstanding convergence of the Homotopy method. Finally, we give a practical example and conclusion.
引用
收藏
页码:561 / 570
页数:10
相关论文
共 50 条
  • [41] MAC MODELING IN 3-D
    BARKER, D
    LOEB, LH
    [J]. BYTE, 1989, 14 (06): : 219 - 220
  • [42] 3-D GEOLOGICAL MODELING
    PHILLIPS, DC
    [J]. GEOTIMES, 1993, 38 (07): : 14 - 16
  • [43] 3-D perception and modeling
    Universität des Saarlandes, Saarbrücken, Germany
    不详
    不详
    不详
    不详
    不详
    不详
    [J]. IEEE Rob Autom Mag, 4 (53-60):
  • [44] A Maxwell's equation solver for 3-D MHD calculations
    Kondrashov, D
    Keefer, D
    [J]. IEEE TRANSACTIONS ON MAGNETICS, 1997, 33 (01) : 254 - 259
  • [45] CAPCAL - A 3-D CAPACITANCE SOLVER FOR SUPPORT OF CAD SYSTEMS
    SEIDL, A
    KLOSE, H
    SVOBODA, M
    OBERNDORFER, J
    ROSNER, W
    [J]. IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, 1988, 7 (05) : 549 - 556
  • [46] Superlinear Speedup in a 3-D Parallel Conjugate Gradient Solver
    Camargos, A. F. P.
    Batalha, R. M. S.
    Martins, C. A. P. S.
    Silva, E. J.
    Soares, G. L.
    [J]. IEEE TRANSACTIONS ON MAGNETICS, 2009, 45 (03) : 1602 - 1605
  • [47] Probabilistic modeling of brittle fracture including 3-D effects on constraint loss and ductile tearing
    Ruggieri, C
    Dodds, RH
    [J]. JOURNAL DE PHYSIQUE IV, 1996, 6 (C6): : 353 - 362
  • [48] 3-D Microscopy Tomography under Sparsity Constraint
    Jung, Jinwook
    Jang, Jaeduck
    Kim, Hyosang
    Ye, Jong Chul
    [J]. WORLD CONGRESS ON MEDICAL PHYSICS AND BIOMEDICAL ENGINEERING 2006, VOL 14, PTS 1-6, 2007, 14 : 2353 - 2356
  • [49] 3-D Hybrid Analytical Modeling: 3-D Fourier Modeling Combined With Mesh-Based 3-D Magnetic Equivalent Circuits
    Pluk, K. J. W.
    Jansen, J. W.
    Lomonova, E. A.
    [J]. IEEE TRANSACTIONS ON MAGNETICS, 2015, 51 (12)
  • [50] Rotational Constraint between Beams in 3-D Space
    Motamedian, Hamid Reza
    Kulachenko, Artem
    [J]. MECHANICAL SCIENCES, 2018, 9 (02) : 373 - 387