Forecasting Chinese Foreign Exchange with Monetary Fundamentals using Artificial Neural Networks

被引:0
|
作者
Lye, Chun-Teck [1 ]
Chan, Tze-Haw [2 ]
Hooy, Chee-Wooi [2 ]
机构
[1] Multimedia Univ, Ctr Fdn Studies & Extens Educ, Melaka 75450, Malaysia
[2] Univ Sains Malaysia, Sch Management, George Town 11800, Malaysia
关键词
Feedforward; generalized regression; monetary model; random walk; vector autoregression; FEEDFORWARD NETWORKS;
D O I
暂无
中图分类号
F8 [财政、金融];
学科分类号
0202 ;
摘要
We employ artificial neural networks (ANNs) and unconditional Vector Autoregressive model (VAR) to perform one-month-ahead out-of-sample predictions of both official and market Yuan/USD exchange rates using monetary fundamentals from 1992:M3 to 2010:M10. The optimal ANNs are attained systematically based on random validation sets. We empirically demonstrated that the generalized regression neural network is superior to the multilayer feedforward network in Chinese foreign exchange forecasting. ANNs generally outperformed in market rate forecasts in which suggest that market rates are supported by monetary fundamentals. On the contrary, official rates do not explained well by monetary fundamentals.
引用
收藏
页码:560 / 564
页数:5
相关论文
共 50 条
  • [21] River flow forecasting using artificial neural networks
    Zakermoshfegh, M
    Ghodsian, A
    Montazer, GA
    HYDRAULICS OF DAMS AND RIVER STRUCTURES, 2004, : 425 - 430
  • [22] POPULATION DYNAMICS FORECASTING USING ARTIFICIAL NEURAL NETWORKS
    Benzer, Recep
    FRESENIUS ENVIRONMENTAL BULLETIN, 2015, 24 (02): : 460 - 466
  • [23] Forecasting monsoon precipitation using artificial neural networks
    Wu, XD
    Cao, HX
    Flitman, A
    Wei, FY
    Feng, GL
    ADVANCES IN ATMOSPHERIC SCIENCES, 2001, 18 (05) : 950 - 958
  • [24] Forecasting reference evapotranspiration using artificial neural networks
    Gonzalez-Camacho, Juan Manuel
    Cervantes-Osornio, Rocio
    Ojeda-Bustamante, Waldo
    Lopez-Cruz, Irineo
    INGENIERIA HIDRAULICA EN MEXICO, 2008, 23 (01): : 127 - 138
  • [25] Electricity Prices Forecasting using Artificial Neural Networks
    Alanis, Alma Y.
    IEEE LATIN AMERICA TRANSACTIONS, 2018, 16 (01) : 105 - 111
  • [26] Improved flow forecasting using artificial neural networks
    Lekkas, D. F.
    Onof, C.
    Proceedings of the 9th International Conference on Environmental Science and Technology, Vol A - Oral Presentations, Pts A and B, 2005, : A877 - A884
  • [27] Forecasting Monsoon Precipitation Using Artificial Neural Networks
    Xiaodan Wu
    Cao Hongxing
    Andrew Flitman
    Wei Fengying
    Feng Guolin
    Advances in Atmospheric Sciences, 2001, 18 : 950 - 958
  • [28] Electricity price forecasting using artificial neural networks
    Villada, Fernando
    Cadavid, Diego Raul
    Molina, Juan David
    REVISTA FACULTAD DE INGENIERIA-UNIVERSIDAD DE ANTIOQUIA, 2008, (44): : 111 - 118
  • [29] Forecasting aquifer parameters using artificial neural networks
    Karahan, Halil
    Ayvaz, M. Tamer
    JOURNAL OF POROUS MEDIA, 2006, 9 (05) : 429 - 444
  • [30] FORECASTING BUSINESS INSOLVENCY USING ARTIFICIAL NEURAL NETWORKS
    do Prado, Jose Willer
    Vilamaior, Adriana Giarola
    Campos, Alyce Cardoso
    Pinheiro do Nascimento, Thaisa Barcellos
    GESTAO E DESENVOLVIMENTO, 2020, 17 (02): : 136 - 162