Ruzsa's theorem on Erdos and Turan conjecture

被引:3
|
作者
Chen, Yong-Gao [1 ]
Yang, Quan-Hui
机构
[1] Nanjing Normal Univ, Sch Math Sci, Nanjing 210046, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
D O I
10.1016/j.ejc.2012.08.001
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For any set A of nonnegative integers, let sigma(A) (n) be the number of solutions to the equation n = a+b, a, b is an element of A. The set A is called a basis of N if sigma(A)(n) >= 1 for all n >= 1. The well known Erdos-Turan conjecture says that if A is a basis of N. then sigma(A)(n) cannot be bounded. In 1990, Ruzsa proved that there exists a basis A of N such that Sigma(n <= N)sigma(2)(A) (n) = O(N). In this paper, we give a new proof of Ruzsa's Theorem. (c) 2012 Elsevier Ltd. All rights reserved.
引用
收藏
页码:410 / 413
页数:4
相关论文
共 50 条
  • [41] Erdos-Turan constants
    Rivat, J
    Tenenbaum, G
    RAMANUJAN JOURNAL, 2005, 9 (1-2): : 111 - 121
  • [42] ON A TURAN TYPE PROBLEM OF ERDOS
    FUREDI, Z
    COMBINATORICA, 1991, 11 (01) : 75 - 79
  • [43] Erdos—Turan型级数
    李兴民
    王燕
    曲阜师范大学学报(自然科学版), 1994, (S1) : 35 - 38
  • [44] On primary pseudo-polynomials (around Ruzsa's conjecture)
    Delaygue, E.
    Rivoal, T.
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2022, 18 (07) : 1613 - 1636
  • [45] An analogue of Ruzsa's conjecture for polynomials over finite fields
    Bell, Jason P.
    Nguyen, Khoa D.
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2021, 178
  • [46] From the Erdos-Turan conjecture to ergodic theory - The contribution of combinatorial number theory to dynamics
    Furstenberg, H
    PAUL ERDOS AND HIS MATHEMATICS I, 2002, 11 : 261 - 277
  • [47] A conjecture of Erdos
    Faudree, R
    AMERICAN MATHEMATICAL MONTHLY, 1998, 105 (05): : 451 - 453
  • [48] A linear bound on the dimension in Green-Ruzsa's theorem
    Cwalina, Karol
    Schoen, Tomasz
    JOURNAL OF NUMBER THEORY, 2013, 133 (04) : 1262 - 1269
  • [49] ON A CONJECTURE OF ERDOS
    Felix, Adam Tyler
    Murty, M. Ram
    MATHEMATIKA, 2012, 58 (02) : 275 - 289
  • [50] On a conjecture of Erdos
    Pilehrood, T. Hessami
    Pilehrood, K. Hessami
    MATHEMATICAL NOTES, 2008, 83 (1-2) : 281 - 284