Generalized theory for node disruption in finite-size complex networks

被引:7
|
作者
Mitra, Bivas [2 ]
Ganguly, Niloy [2 ]
Ghose, Sujoy [2 ]
Peruani, Fernando [1 ,3 ]
机构
[1] Ctr Etud Saclay, CEA, Serv Phys Etat Condense, F-91191 Gif Sur Yvette, France
[2] Indian Inst Technol, Dept Comp Sci & Engn, Kharagpur 721302, W Bengal, India
[3] Inst Syst Complexes Paris Ile de France, F-75005 Paris, France
关键词
D O I
10.1103/PhysRevE.78.026115
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
After a failure or attack the structure of a complex network changes due to node removal. Here, we show that the degree distribution of the distorted network, under any node disturbances, can be easily computed through a simple formula. Based on this expression, we derive a general condition for the stability of noncorrelated finite complex networks under any arbitrary attack. We apply this formalism to derive an expression for the percolation threshold f(c) under a general attack of the form f(k)similar to ky, where f(k) stands for the probability of a node of degree k of being removed during the attack. We show that f(c) of a finite network of size N exhibits an additive correction which scales as N-1 with respect to the classical result for infinite networks.
引用
收藏
页数:5
相关论文
共 50 条
  • [21] SCALING THEORY FOR FINITE-SIZE EFFECTS IN CRITICAL REGION
    FISHER, ME
    BARBER, MN
    PHYSICAL REVIEW LETTERS, 1972, 28 (23) : 1516 - &
  • [22] On finite-size d-branes in superstring theory
    Luca Mattiello
    Ivo Sachs
    Journal of High Energy Physics, 2019
  • [23] Finite-size scaling theory for explosive percolation transitions
    Cho, Y. S.
    Kim, S. -W.
    Noh, J. D.
    Kahng, B.
    Kim, D.
    PHYSICAL REVIEW E, 2010, 82 (04):
  • [24] FINITE-SIZE SCALING IN HAMILTONIAN FIELD-THEORY
    HAMER, CJ
    BARBER, MN
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1980, 13 (05): : L169 - L174
  • [25] Finite-size scaling theory for anisotropic percolation models
    Sinha, Santanu
    Santra, S. B.
    INDIAN JOURNAL OF PHYSICS AND PROCEEDINGS OF THE INDIAN ASSOCIATION FOR THE CULTIVATION OF SCIENCE, 2008, 82 (07): : 919 - 927
  • [26] Finite-size topology
    Cook, Ashley M.
    Nielsen, Anne E. B.
    PHYSICAL REVIEW B, 2023, 108 (04)
  • [27] DISTRIBUTION OF LARGE CURRENTS IN FINITE-SIZE RANDOM RESISTOR NETWORKS
    DUXBURY, PM
    GUYER, RA
    MACHTA, J
    PHYSICAL REVIEW B, 1995, 51 (10): : 6711 - 6714
  • [28] Finite-Size Networks from Cylindrical Polyelectrolyte Brushes and Porphyrins
    Ruthard, Christian
    Maskos, Michael
    Kolb, Ute
    Groehn, Franziska
    MACROMOLECULES, 2009, 42 (03) : 830 - 840
  • [29] CONDUCTANCE AND RESISTANCE JUMPS IN FINITE-SIZE RANDOM RESISTOR NETWORKS
    BATROUNI, GG
    KAHNG, B
    REDNER, S
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1988, 21 (01): : L23 - L29
  • [30] Distribution of large currents in finite-size random resistor networks
    Duxbury, P. M.
    Guyer, R. A.
    Machta, J.
    Physical Review B: Condensed Matter, 51 (10):