High viscous oil-water two-phase flow: experiments & numerical simulations

被引:10
|
作者
Archibong-Eso, Archibong [1 ,2 ]
Shi, Jing [1 ]
Baba, Yahaya D. [1 ,3 ]
Aliyu, Aliyu M. [4 ]
Raji, Yusuf O. [5 ]
Yeung, Hoi [1 ]
机构
[1] Cranfield Univ, Oil & Gas Engn Ctr, Cranfield, Beds, England
[2] Cross River Univ Technol, Dept Mech Engn, Energy & Fluids Engn Grp, Calabar, Nigeria
[3] Afe Babalola Univ, Dept Chem Petr Engn, PMB 5454, Ado Ekiti, Nigeria
[4] Univ Nottingham, Fac Engn, Nottingham NG7 2RD, England
[5] Abubakar Tafawa Balewa Univ, Chem Engn Programme, PMB 0248, Bauchi, Nigeria
关键词
CFD; Flow patterns; Pressure gradient; Pipelines; Heavy oil; Viscosity; Oil and gas; HOLDUP;
D O I
10.1007/s00231-018-2461-9
中图分类号
O414.1 [热力学];
学科分类号
摘要
An experimental study on highlyviscous oil-water two-phase flow conducted in a 5.5m long and 25.4mm internal diameter (ID) pipeline is presented. Mineral oil with viscosity ranging from 3.5Pa.s - 5.0Pa.s and water were used as test fluid for this study. Experiments were conducted for superficial velocities of oil and water ranging from 0.06 to 0.55m/s and 0.01m/s to 1.0m/s respectively. Axial pressure measurements were made from which the pressure gradients were calculated. Flow pattern determination was aided by high definition video recordings. Numerical simulation of experimental flow conditions is performed using a commercially available Computational Fluid Dynamics code. Results show that at high oil superficial velocities, Core Annular Flow (CAF) is the dominant flow pattern while Oil Plug in Water Flow (OPF) and Dispersed Oil in Water (DOW) flow patterns are dominant high water superficial velocities. Pressure Gradient results showed a general trend of reduction to a minimum as water superficial velocity increases before subsequently increasing on further increasing the superficial water velocity. The CFD results performed well in predicting the flow configurations observed in the experiments.
引用
收藏
页码:755 / 767
页数:13
相关论文
共 50 条
  • [21] Oil-Water two-Phase Flow Inside T-Junction
    Li-yang Wang
    Ying-xiang Wu
    Zhi-chu Zheng
    Jun Guo
    Jun Zhang
    Chi Tang
    Journal of Hydrodynamics, 2008, 20 : 147 - 153
  • [22] Complex network analysis in inclined oil-water two-phase flow
    Gao Zhong-Ke
    Jin Ning-De
    CHINESE PHYSICS B, 2009, 18 (12) : 5249 - 5258
  • [23] OIL-WATER TWO-PHASE FLOW INSIDE T-JUNCTION
    Wang Li-yang
    Wu Ying-xiang
    Zheng Zhi-chu
    Guo Jun
    Zhang Jun
    Tang Chi
    JOURNAL OF HYDRODYNAMICS, 2008, 20 (02) : 147 - 153
  • [24] Oil-water two-phase flow measurement based on differential pressure
    National Laboratory of Industrial Control Technology, Department of Control Science and Engineering, Zhejiang University, Hangzhou 310027, China
    Zhejiang Daxue Xuebao (Gongxue Ban), 2007, 2 (365-368):
  • [25] Complex network analysis in inclined oil-water two-phase flow
    高忠科
    金宁德
    Chinese Physics B, 2009, 18 (12) : 5249 - 5258
  • [26] Oil-water two-phase flow measurement using vortex flowmeter
    Xing, Juan
    Zhang, Tao
    Yi Qi Yi Biao Xue Bao/Chinese Journal of Scientific Instrument, 2009, 30 (04): : 882 - 886
  • [27] Complex network analysis in inclined oil-water two-phase flow
    School of Electrical Engineering and Automation, Tianjin University, Tianjin 300072, China
    Chin. Phys., 2009, 12 (5249-5258):
  • [28] OIL-WATER TWO-PHASE FLOW INSIDE T-JUNCTION
    WANG Li-yang
    Journal of Hydrodynamics, 2008, (02) : 147 - 153
  • [29] Study of Oil-Water Two-Phase Stratified Flow in Horizontal Fractures
    Huang, Na
    Liu, Dongxu
    Sun, Yuhan
    Liu, Lei
    2020 INTERNATIONAL CONFERENCE ON ENERGY, ENVIRONMENT AND BIOENGINEERING (ICEEB 2020), 2020, 185
  • [30] Experimental study of oil-water two-phase flow in a capillary model
    Dai, L.
    Zhang, Y.
    JOURNAL OF PETROLEUM SCIENCE AND ENGINEERING, 2013, 108 : 96 - 106