Kinetic analysis of MgB2 layer formation in advanced internal magnesium infiltration (AIMI) processed MgB2 wires

被引:32
|
作者
Li, G. Z. [1 ]
Sumption, M. D. [1 ]
Collings, E. W. [1 ]
机构
[1] Ohio State Univ, Dept Mat Sci & Engn, CSMM, Columbus, OH 43210 USA
关键词
Magnesium diboride; AIMI; Infiltration; Kinetics; Electron microscopy; HIGH-PERFORMANCE; DENSITY; SIZE;
D O I
10.1016/j.actamat.2015.06.013
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Significantly enhanced critical current density (J(c)) for MgB2 superconducting wires can be obtained following the advanced internal Mg infiltration (AIMI) route. But unless suitable precautions are taken, the AIMI-processed MgB2 wires will exhibit incomplete MgB2 layer formation, i.e. reduced superconductor core size and hence suppressed current-carrying capability. Microstructural characterization of AIM! MgB2 wires before and after the heat treatment reveals that the reaction mechanism changes from a "Mg infiltration-reaction" at the beginning of the heat treatment to a "Mg diffusion-reaction" once a dense MgB2 layer is formed. A drastic drop in the Mg transport rate from infiltration to diffusion causes the termination of the MgB2 core growth. To quantify this process, a two-stage kinetic model is built to describe the MgB2 layer formation and growth. The derived kinetic model and the associated experimental observations indicate that fully reacted AIMI-processed MgB2 wires can be achieved following the optimization of B particle size, B powder packing density, MgB2 reaction activation energy and its response to the additions of dopants. (C) 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:66 / 71
页数:6
相关论文
共 50 条
  • [41] MgB2 Multicore Wire Prepared by IMD Technology-Investigation of the MgB2 Layer Formation During Annealing
    Haessler, Wolfgang
    Kovac, Pavol
    Scheiter, Juliane
    Rosova, Alica
    Pachla, Wacek
    IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, 2017, 27 (04)
  • [42] Activation energy distribution of MgB2 wires
    Reissner, M.
    Proschofsky-Spindler, D.
    Husek, I.
    Kulich, M.
    Kovac, P.
    SUPERCONDUCTIVITY CENTENNIAL CONFERENCE 2011, 2012, 36 : 1582 - 1587
  • [43] Neutron irradiation of SiC doped and magnesium rich MgB2 wires
    Eisterer, Michael
    Schoeppl, K. Robert
    Weber, Harald W.
    Sumption, Mike D.
    Bhatia, Mohit
    IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, 2007, 17 (02) : 2814 - 2817
  • [44] Electromagnetic densification of MgB2/Cu wires
    Wozniak, M.
    Giowacki, B. A.
    SUPERCONDUCTOR SCIENCE & TECHNOLOGY, 2014, 27 (03):
  • [45] Universal influence of disorder on MgB2 wires
    Eisterer, M.
    Mueller, R.
    Schoeppl, R.
    Weber, H. W.
    Soltanian, S.
    Dou, S. X.
    SUPERCONDUCTOR SCIENCE & TECHNOLOGY, 2007, 20 (03): : 117 - 122
  • [46] Investigation of magnetic relaxation in MgB2 wires
    Reissner, M.
    Mohammad, S.
    Kovac, P.
    Husek, I.
    Melisek, T.
    25TH INTERNATIONAL CONFERENCE ON LOW TEMPERATURE PHYSICS (LT25), PART 5: SUPERCONDUCTIVITY, 2009, 150
  • [47] Monotonic decrease of Tcs with thinning of the superconducting MgB2 layer in MgB2/Ni and MgB2/B alternately-layered thin films
    Doi, T.
    Kitaguchi, H.
    Hata, S.
    Fukuyama, K.
    Masuda, K.
    Takahashi, K.
    Yoshidome, T.
    Hakuraku, Y.
    Kuwano, N.
    SUPERCONDUCTOR SCIENCE & TECHNOLOGY, 2007, 20 (12): : 1223 - 1227
  • [48] Another look at MgB2 and YBCO wires [2]
    Hawsey, Robert A.
    Peterson, Dean E.
    Science, 2002, 296 (5568)
  • [49] Ex situ MgB2 barrier behavior of monofilament in situ MgB2 wires with Glidcop® sheath material
    Kario, A.
    Morawski, A.
    Haessler, W.
    Nenkov, K.
    Schubert, M.
    Herrmann, M.
    Ringsdorf, B.
    Schlachter, S. I.
    Goldacker, W.
    Holzapfel, B.
    Schultz, L.
    SUPERCONDUCTOR SCIENCE & TECHNOLOGY, 2010, 23 (11):
  • [50] Study of MgB2 powders and Cu/MgB2 powder-in-tube composite wires with Zn addition
    Martínez, E
    Angurel, LA
    Navarro, R
    Millán, A
    Rillo, C
    Artigas, M
    IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, 2003, 13 (02) : 3210 - 3213