Higher-Order Topological Band Structures

被引:47
|
作者
Trifunovic, Luka [1 ]
Brouwer, Piet W. [2 ,3 ]
机构
[1] Univ Zurich, Dept Phys, Winterthurerstr 190, CH-8057 Zurich, Switzerland
[2] Free Univ Berlin, Dahlem Ctr Complex Quantum Syst, Arnimallee 14, D-14195 Berlin, Germany
[3] Free Univ Berlin, Dept Phys, Arnimallee 14, D-14195 Berlin, Germany
来源
基金
瑞士国家科学基金会;
关键词
higher-order topological phases; topological crystalline insulators and superconductors; topology; INSULATORS; CATALOG;
D O I
10.1002/pssb.202000090
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
The interplay of topology and symmetry in a material's band structure may result in various patterns of topological states of different dimensionality on the boundary of a crystal. The protection of these "higher-order" boundary states comes from topology, with constraints imposed by symmetry. Herein, the bulk-boundary correspondence of topological crystalline band structures, which relates the topology of the bulk band structure to the pattern of the boundary states, is reviewed. Furthermore, recent advances in theK-theoretic classification of topological crystalline band structures are discussed.
引用
收藏
页数:16
相关论文
共 50 条
  • [31] Higher-order topological insulators in a magnetic field
    Otaki, Yuria
    Fukui, Takahiro
    PHYSICAL REVIEW B, 2019, 100 (24)
  • [32] Higher-order topological Anderson insulators in quasicrystals
    Peng, Tan
    Hua, Chun-Bo
    Chen, Rui
    Liu, Zheng-Rong
    Xu, Dong-Hui
    Zhou, Bin
    PHYSICAL REVIEW B, 2021, 104 (24)
  • [33] Higher-order topological Anderson amorphous insulator
    Peng, Tan
    Xiong, Yong-Chen
    Zhu, Xiaolu
    Cao, Wei
    Lyu, Fang
    Hou, Yue
    Wang, Ziyu
    Xiong, Rui
    PHYSICAL REVIEW B, 2025, 111 (07)
  • [34] Higher-order topological semimetal in acoustic crystals
    Qiang Wei
    Xuewei Zhang
    Weiyin Deng
    Jiuyang Lu
    Xueqin Huang
    Mou Yan
    Gang Chen
    Zhengyou Liu
    Suotang Jia
    Nature Materials, 2021, 20 : 812 - 817
  • [35] DIMENSIONAL REDUCTION AND HIGHER-ORDER TOPOLOGICAL INVARIANTS
    SHERRY, TN
    TCHRAKIAN, DH
    PHYSICS LETTERS B, 1984, 147 (1-3) : 121 - 126
  • [36] Higher-order topological phases on fractal lattices
    Manna, Sourav
    Nandy, Snehasish
    Roy, Bitan
    PHYSICAL REVIEW B, 2022, 105 (20)
  • [37] Higher-order topological insulators in hyperbolic lattices
    Liu, Zheng-Rong
    Hua, Chun-Bo
    Peng, Tan
    Chen, Rui
    Zhou, Bin
    PHYSICAL REVIEW B, 2023, 107 (12)
  • [38] Pfaffian Formalism for Higher-Order Topological Insulators
    Li, Heqiu
    Sun, Kai
    PHYSICAL REVIEW LETTERS, 2020, 124 (03)
  • [39] Nonlinear higher-order polariton topological insulator
    Zhang, Yiqi
    Kartashov, Y., V
    Torner, L.
    Li, Yongdong
    Ferrando, A.
    OPTICS LETTERS, 2020, 45 (17) : 4710 - 4713
  • [40] Higher-order topological insulator in a dodecagonal quasicrystal
    Hua, Chun-Bo
    Chen, Rui
    Zhou, Bin
    Xu, Dong-Hui
    PHYSICAL REVIEW B, 2020, 102 (24)