Non-noble metal Co as active sites on TiO2 nanorod for promoting photocatalytic H2 production

被引:29
|
作者
Chen, Wei [1 ,2 ]
Liu, Mei [1 ]
Wang, Yanhong [1 ]
Gao, Li [1 ]
Dang, Haifeng [3 ]
Mao, Liqun [1 ]
机构
[1] Henan Univ, Henan Engn Res Ctr Resource & Energy Recovery Was, Kaifeng 475004, Peoples R China
[2] Henan Univ, Inst Funct Polymer Composites, Kaifeng 475004, Peoples R China
[3] Dongguan Univ Technol, Sch Environm & Civil Engn, Dongguan 523808, Peoples R China
基金
中国国家自然科学基金;
关键词
Photocatalyst; H-2; production; Co cocatalyst; Charge separation; Overpotential; HYDROGEN-PRODUCTION; AU/TIO2; PHOTOCATALYSTS; HIGH-EFFICIENCY; WATER; COCATALYST; EVOLUTION; MOS2; NANOSHEETS; CARBON; ENHANCEMENT;
D O I
10.1016/j.materresbull.2019.04.011
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Non-noble metal Co was decorated on TiO2 nanorod by a photodeposition method to improve photocatalytic H-2 production. Co particles with ca. 7 nm diameter dispersed well onto the TiO2 nanorods. Photocatalytic H-2 production performance of Co/TiO2 was tested and the results showed that the photocatalytic activity was promoted by Co loading. The H-2 evolution rate of 2.0 wt% Co/TiO2 (839.8 mu mol.h(-1)) is 8.9 times of that of bare TiO2 (95 mol.h(-1)), reaching 77.8% of that of 1.0 wt% Pt/TiO2 (1080 mu mol.h-1). Photoelectrochemical and PL measurements indicated that, like Pt cocatalyst, the loading of Co particles reduces the overpotential of H-2 evolution as well as facilitates the transfer of photoinduced electrons from TiO2 to Co cocatalyst, thus improving the photocatalytic H-2 evolution activity. The study not only provides a way to cut the cost of photocatalysts but gives an in-depth understanding of the effect of cocatalysts on enhancing photocatalytic H-2 evolution activity.
引用
收藏
页码:16 / 21
页数:6
相关论文
共 50 条
  • [31] Photocatalytic H2 production over inverse opal TiO2 catalysts
    Fiorenza, Roberto
    Bellardita, Marianna
    Scire, Salvatore
    Palmisano, Leonardo
    CATALYSIS TODAY, 2019, 321 : 113 - 119
  • [32] TiO2 modification by gold (Au) for photocatalytic hydrogen (H2) production
    Gupta, Bhavana
    Melvin, Ambrose A.
    Matthews, Tom
    Dash, S.
    Tyagi, A. K.
    RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2016, 58 : 1366 - 1375
  • [33] Production of H2 in the photocatalytic reactions of ethane on TiO2-supported noble metals
    Halasi, Gyula
    Toth, Anita
    Bansagi, Tamas
    Solymosi, Frigyes
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2016, 41 (31) : 13485 - 13492
  • [34] Enhanced photocatalytic H2 production on hierarchical rutile TiO2 microspheres
    Wang, Shaoying
    Zheng, Zhaoke
    Huang, Baibiao
    Wang, Zeyan
    Liu, Yuanyuan
    Qin, Xiaoyan
    Zhang, Xiaoyang
    Dai, Ying
    RSC ADVANCES, 2013, 3 (15): : 5156 - 5161
  • [35] Study on the photocatalytic dry reforming of methane and carbon dioxide to hydrogen over non-noble metal M/TiO2 catalysts
    刘文慧
    刘振民
    王远洋
    工业催化, 2022, (02) : 28 - 34
  • [36] Photocatalytic H2O2 production using Ti3C2 MXene as a non-noble metal cocatalyst
    Chen, Yiming
    Gu, Wenquan
    Tan, Li
    Ao, Zhimin
    An, Taicheng
    Wang, Shaobin
    APPLIED CATALYSIS A-GENERAL, 2021, 618
  • [37] Self-hydrogenated shell promoting photocatalytic H2 evolution on anatase TiO2
    Yue Lu
    Wen-Jin Yin
    Kai-Lin Peng
    Kuan Wang
    Qi Hu
    Annabella Selloni
    Fu-Rong Chen
    Li-Min Liu
    Man-Ling Sui
    Nature Communications, 9
  • [38] Self-hydrogenated shell promoting photocatalytic H2 evolution on anatase TiO2
    Lu, Yue
    Yin, Wen-Jin
    Peng, Kai-Lin
    Wang, Kuan
    Hu, Qi
    Selloni, Annabella
    Chen, Fu-Rong
    Liu, Li-Min
    Sui, Man-Ling
    NATURE COMMUNICATIONS, 2018, 9
  • [39] Active Sites for H2 Adsorption and Activation in Au/TiO2 and the Role of the Support
    Boronat, Merce
    Illas, Francesc
    Corma, Avelino
    JOURNAL OF PHYSICAL CHEMISTRY A, 2009, 113 (16): : 3750 - 3757
  • [40] Noble metal free naphthylbisimide/TiO2/graphene: an efficient H2 evolution photocatalyst
    Mondal, Indranil
    Pal, Ujjwal
    NEW JOURNAL OF CHEMISTRY, 2015, 39 (09) : 6925 - 6934