N-WAVE RUNUP STATISTICS AT SURF ZONE USING BOUSSINESQ-TYPE MODEL

被引:0
|
作者
Chen, J. M. [1 ]
Liang, D. [1 ]
Rana, R.
机构
[1] Univ Cambridge, Dept Engn, Cambridge CB2 1PZ, England
关键词
N-wave; Tsunami; Steepness; Runup; TVD-MACCORMACK; LONG WAVES; EQUATIONS; TRANSFORMATION; SIMULATION; BREAKING; FORM;
D O I
暂无
中图分类号
P75 [海洋工程];
学科分类号
0814 ; 081505 ; 0824 ; 082401 ;
摘要
A TVD Lax-Wendroff scheme solves the Boussinesq-type equations is presented, extensively validated, and clearly demonstrated to be a robust and efficient engineering tool to simulate the physical processes involved in the tsunami wave runup and interaction of the propagating solitary waves with the idealized coastal beaches. To better understand the physical processes of the tsunami wave runup at surf zone, a parametric study concerning N-wave runup is carried out. For all cases investigated, the qualitative features of the propagating N-waves remain unaltered, even for the large wave events. The relative maximum runup height and wave steepness are found to be strongly correlated and appeared to be linearly asymptotic in form. Also, the severity of extreme wave attack is found to be a function of beach slope for a given extreme event. The numerical simulations reveal the significance of the nonlinear wave effects on the predicted maximum N-wave runup heights, which provide guidance in selecting the design height of coastal defence structures and specifying the clearance distance between the shoreline and infrastructure.
引用
收藏
页码:211 / 220
页数:10
相关论文
共 50 条
  • [21] Numerical Simulation of Solitary Wave Run-Up and Overtopping using Boussinesq-Type Model
    Wen-Shuo Tsung
    Shih-Chun Hsiao
    Ting-Chieh Lin
    [J]. Journal of Hydrodynamics, 2012, 24 : 899 - 913
  • [22] INVESTIGATIONS ON THE INFLUENCE OF A LOW-TIDE TERRACE USING THE BOUSSINESQ-TYPE WAVE MODEL TRITON
    Caires, Sofia
    van Gent, Marcel R. A.
    [J]. PROCEEDINGS OF COASTAL DYNAMICS 2009, 2009,
  • [23] Anomalous wave statistics following sudden depth transitions: application of an alternative Boussinesq-type formulation
    Bonar, Paul A. J.
    Fitzgerald, Colm J.
    Lin, Zhiliang
    van den Bremer, Ton S.
    Adcock, Thomas A. A.
    Borthwick, Alistair G. L.
    [J]. JOURNAL OF OCEAN ENGINEERING AND MARINE ENERGY, 2021, 7 (02) : 145 - 155
  • [24] An evaluation of wave propagation simulations over a barred beach with a Boussinesq-type model
    Mil-Homens, Joao
    Fortes, Conceicao J. E. M.
    Pires-Silva, Antonio A.
    [J]. OCEAN ENGINEERING, 2010, 37 (2-3) : 236 - 251
  • [25] Wave kinematics from Boussinesq-type equations.
    Pedrozo-Acuña, A
    Simmonds, DJ
    Silva-Casarín, R
    [J]. INGENIERIA HIDRAULICA EN MEXICO, 2005, 20 (04): : 69 - 75
  • [26] Boussinesq-type equations for wave-current interaction
    Zou, Z. L.
    Hu, P. C.
    Fang, K. Z.
    Liu, Z. B.
    [J]. WAVE MOTION, 2013, 50 (04) : 655 - 675
  • [27] On Higher-Order Boussinesq-Type Wave Models
    Memos, Constantine D.
    Klonaris, Georgios Th.
    Chondros, Michalis K.
    [J]. JOURNAL OF WATERWAY PORT COASTAL AND OCEAN ENGINEERING, 2016, 142 (01)
  • [28] Near-shore wave simulations with a Boussinesq-type model including breaking
    Borsboom, M
    Doorn, N
    Groeneweg, J
    van Gent, M
    [J]. COASTAL DYNAMICS '01: PROCEEDINGS, 2001, : 759 - 768
  • [29] Linear shoaling in Boussinesq-type wave propagation models
    Simarro, Gonzalo
    Orfila, Alejandro
    Galan, Alvaro
    [J]. COASTAL ENGINEERING, 2013, 80 : 100 - 106
  • [30] Boussinesq-type equations for nonlinear evolution of wave trains
    Fang, K. Z.
    Zou, Z. L.
    [J]. WAVE MOTION, 2010, 47 (01) : 12 - 32