PolSAR Image Crop Classification Based on Deep Residual Learning Network

被引:0
|
作者
Mei, Xin [1 ]
Nie, Wen [1 ]
Liu, Junyi [2 ]
Huang, Kui [3 ]
机构
[1] Hubei Univ, Fac Resources & Environm Sci, Wuhan, Hubei, Peoples R China
[2] Wuhan Univ, State Key Lab Informat Engn Surveying Mapping & R, Wuhan, Hubei, Peoples R China
[3] Wuhan Univ, Sch Geodesy & Geomat, Wuhan, Hubei, Peoples R China
关键词
PolSAR image; Crop classification; Simple linear iterative cluster; Feature optimization; Deep residual network;
D O I
暂无
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
PolSAR image classification is one of the most basic applications of polarimetric synthetic aperture radar (PolSAR) data, which is of great significance to the research and subsequent application of PolSAR data. Traditional PolSAR image classification methods, mainly based on a single type of target decomposition method, the dimension of feature used in the process of PolSAR image classification process is relatively less and cannot make full use of the abundant feature of the PolSAR image, which is the one of the most essential characteristics of PolSAR data. With the development of deep learning, an amount of excellent deep learning models is proposed, such as deep brief net, AlexNet, deep residual network (ResNet) and so on. The classification method based on deep learning is proved to be better than traditional methods in the classification of optical and SAR images. This paper mainly analyzes the application of ResNet model in PolSAR image classification, the effectiveness of the method was proved by comparing the classical PolSAR image classification method. Firstly, some target decomposition methods were selected to calculate the multi-dimensional feature image. Secondly, the sample points of different land cover types were manually selected, and the multi-dimensional features were extracted to form the experimental data samples. Then, the PolSAR classification model based on ResNet was constructed, and the model parameters were adjusted dynamically according to the experimental sample data. Finally, the trained model was applied to the classification of experimental data, and the accuracy of the model was assessed by calculating the Kappa index of the classification result. In this paper, a quantitative index is proposed to calculate the ability of each feature to distinguish different land cover types, and the weak distinguishing feature was deleted to reduce the influence of classification independent features on the model and to improved classification accuracy. As for the speckle noise, the PolSAR image was preprocessed by simple linear iterative clustering (SLIC) superpixel segmentation, the experimental image was divided into a determined number of superpixel blocks, and the PolSAR image classification based on super-pixel blocks. Experimental results show that the PolSAR image classification method based on ResNet is conducive to the comprehensive utilization of multidimensional features of PolSAR image, the classification accuracy of PolSAR image is better than that of the classic classification method. The optimization of feature sets is beneficial to reduce model training time and improve the classification accuracy of PolSAR image as well. The superpixel segmentation is beneficial to reduce speckle noise and further improves the accuracy of classification.
引用
收藏
页码:247 / 252
页数:6
相关论文
共 50 条
  • [21] Rock image classification using deep residual neural network with transfer learning
    Chen, Weihao
    Su, Lumei
    Chen, Xinqiang
    Huang, Zhihao
    FRONTIERS IN EARTH SCIENCE, 2023, 10
  • [22] Hyperspectral image classification based on deep separable residual attention network
    Tu, Chao
    Liu, Wanjun
    Zhao, Linlin
    Yan, Tinghao
    INFRARED PHYSICS & TECHNOLOGY, 2024, 140
  • [23] POLSAR IMAGE CLASSIFICATION VIA TRANSFER LEARNING AND FULLY CONVOLUTIONAL NETWORK
    Xie, Wen
    Sun, Hongyue
    Zhang, Yuzhuo
    Ren, Wen
    IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2023, : 8026 - 8029
  • [24] Entropy Based Generative Adversarial Network for PolSAR Image Classification
    Tian, Meng
    Zhang, Shuyin
    Cai, Yitao
    Xu, Chao
    2022 IEEE 2ND INTERNATIONAL CONFERENCE ON COMPUTER COMMUNICATION AND ARTIFICIAL INTELLIGENCE (CCAI 2022), 2022, : 132 - 136
  • [25] A Statistical-Texture Feature Learning Network for PolSAR Image Classification
    Zhang, Qingyi
    He, Chu
    Fang, Xiaoxiao
    Tong, Ming
    He, Bokun
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2023, 20
  • [26] A Statistical-Spatial Feature Learning Network for PolSAR Image Classification
    Wu, Qian
    Wen, Zaidao
    Wang, Yongqing
    Luo, Yanbo
    Li, Hao
    Chen, Qiushi
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [27] DEPTHWISE SEPARABLE RESIDUAL NETWORK BASED ON UNET FOR POLSAR IMAGES CLASSIFICATION
    Xie, Wen
    Wang, Ruonan
    Yang, Xin
    Hua, Wenqiang
    2022 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2022), 2022, : 1039 - 1042
  • [28] PolSAR image classification based on polarimetric decomposition and ensemble learning
    Xiao Y.
    Wang B.
    Jiang Q.
    Wen Y.
    Nongye Gongcheng Xuebao/Transactions of the Chinese Society of Agricultural Engineering, 2020, 36 (16): : 134 - 141
  • [29] A Deep Similarity Clustering Network With Compound Regularization for Unsupervised PolSAR Image Classification
    Zuo, Yixin
    Li, Guangzuo
    Ren, Wenjuan
    Hu, Yuxin
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2024, 17 : 11451 - 11466
  • [30] Image Classification of Pests with Residual Neural Network Based on Transfer Learning
    Li, Chen
    Zhen, Tong
    Li, Zhihui
    APPLIED SCIENCES-BASEL, 2022, 12 (09):