Reproducibility and Gap Control of Superconducting Flux Qubits

被引:2
|
作者
Chang, T. [1 ,2 ]
Holzman, I [1 ,2 ]
Cohen, T. [1 ,2 ]
Johnson, B. C. [3 ,4 ]
Jamieson, D. N. [3 ,4 ]
Stern, M. [1 ,2 ]
机构
[1] Dept Phys, Qantum Nanoelect Lab, IL-5290002 Ramat Gan, Israel
[2] Bar Ilan Inst Nanotechnol & Adv Mat BINA, IL-5290002 Ramat Gan, Israel
[3] Univ Melbourne, ARC Ctr Quantum Computat & Commun Technol CQC2T, Parkville, Vic 3010, Australia
[4] Univ Melbourne, Sch Phys, Parkville, Vic 3010, Australia
来源
PHYSICAL REVIEW APPLIED | 2022年 / 18卷 / 06期
关键词
SPIN;
D O I
10.1103/PhysRevApplied.18.064062
中图分类号
O59 [应用物理学];
学科分类号
摘要
Superconducting flux qubits are promising candidates for the physical realization of a scalable quantum processor. Indeed, these circuits may have both a small decoherence rate and a large anharmonicity. These properties enable the application of fast quantum gates with high fidelity and reduce scaling limitations due to frequency crowding. The major difficulty of flux qubits' design consists of controlling precisely their transition energy-the so-called qubit gap-while keeping long and reproducible relaxation times. Solving this problem is challenging and requires extremely good control of e-beam lithography, oxidation parameters of the junctions, and sample surface. Here we present measurements of a large batch of flux qubits and demonstrate a high level of reproducibility and control of qubit gaps (+/- 0.6 GHz), relaxation times (15-20 mu s), and pure echo dephasing times (15-30 mu s). These results open the way for potential applications in the fields of quantum hybrid circuits and quantum computation.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] Tunable Superconducting Flux Qubits with Long Coherence Times
    Chang, T.
    Cohen, T.
    Holzman, I.
    Catelani, G.
    Stern, M.
    PHYSICAL REVIEW APPLIED, 2023, 19 (02):
  • [22] Tunable interaction of superconducting flux qubits in circuit QED
    Xue, Zheng-Yuan
    Li, Ya-Fei
    Zhou, Jian
    Gao, Yu-Mei
    Zhang, Gang
    QUANTUM INFORMATION PROCESSING, 2016, 15 (02) : 721 - 729
  • [23] Long range and selective coupler for superconducting flux qubits
    Nakano, Hayato
    Kakuyanagi, Kosuke
    Ueda, Masahito
    Semba, Kouichi
    APPLIED PHYSICS LETTERS, 2007, 91 (03)
  • [24] Flux-based superconducting qubits for quantum computation
    Orlando, TP
    Lloyd, S
    Levitov, LS
    Berggren, KK
    Feldman, MJ
    Bocko, MF
    Mooij, JE
    Harmans, CJP
    van der Wal, CH
    PHYSICA C-SUPERCONDUCTIVITY AND ITS APPLICATIONS, 2002, 372 : 194 - 200
  • [25] Tunable Superconducting Qubits with Flux-Independent Coherence
    Hutchings, M. D.
    Hertzberg, J. B.
    Liu, Y.
    Bronn, N. T.
    Keefe, G. A.
    Brink, Markus
    Chow, Jerry M.
    Plourde, B. L. T.
    PHYSICAL REVIEW APPLIED, 2017, 8 (04):
  • [26] Heat currents in non-superconducting flux qubits
    Szelag, M.
    Dajka, J.
    Zipper, E.
    Luczka, J.
    ACTA PHYSICA POLONICA B, 2008, 39 (05): : 1177 - 1186
  • [27] Single Flux Pulses Affecting the Ensemble of Superconducting Qubits
    Denisenko, M. V.
    Klenov, N. V.
    Satanin, A. M.
    FOURTH INTERNATIONAL CONFERENCE ON QUANTUM TECHNOLOGIES (ICQT-2017), 2018, 1936
  • [28] Circuit modeling of flux qubits interacting with superconducting waveguides
    G. Csaba
    Z. Fahem
    F. Peretti
    P. Lugli
    Journal of Computational Electronics, 2007, 6 : 105 - 108
  • [29] Circuit modeling of flux qubits interacting with superconducting waveguides
    Csaba, G.
    Fahem, Z.
    Peretti, F.
    Lugli, P.
    JOURNAL OF COMPUTATIONAL ELECTRONICS, 2007, 6 (1-3) : 105 - 108
  • [30] Demonstration of a Nonstoquastic Hamiltonian in Coupled Superconducting Flux Qubits
    Ozfidan, I
    Deng, C.
    Smirnov, A. Y.
    Lanting, T.
    Harris, R.
    Swenson, L.
    Whittaker, J.
    Altomare, F.
    Babcock, M.
    Baron, C.
    Berkley, A. J.
    Boothby, K.
    Christiani, H.
    Bunyk, P.
    Enderud, C.
    Evert, B.
    Hager, M.
    Hajda, A.
    Hilton, J.
    Huang, S.
    Hoskinson, E.
    Johnson, M. W.
    Jooya, K.
    Ladizinsky, E.
    Ladizinsky, N.
    Li, R.
    MacDonald, A.
    Marsden, D.
    Marsden, G.
    Medina, T.
    Molavi, R.
    Neufeld, R.
    Nissen, M.
    Norouzpour, M.
    Oh, T.
    Pavlov, I
    Perminov, I
    Poulin-Lamarre, G.
    Reis, M.
    Prescott, T.
    Rich, C.
    Sato, Y.
    Sterling, G.
    Tsai, N.
    Volkmann, M.
    Wilkinson, W.
    Yao, J.
    Amin, M. H.
    PHYSICAL REVIEW APPLIED, 2020, 13 (03)