Reproducibility and Gap Control of Superconducting Flux Qubits

被引:2
|
作者
Chang, T. [1 ,2 ]
Holzman, I [1 ,2 ]
Cohen, T. [1 ,2 ]
Johnson, B. C. [3 ,4 ]
Jamieson, D. N. [3 ,4 ]
Stern, M. [1 ,2 ]
机构
[1] Dept Phys, Qantum Nanoelect Lab, IL-5290002 Ramat Gan, Israel
[2] Bar Ilan Inst Nanotechnol & Adv Mat BINA, IL-5290002 Ramat Gan, Israel
[3] Univ Melbourne, ARC Ctr Quantum Computat & Commun Technol CQC2T, Parkville, Vic 3010, Australia
[4] Univ Melbourne, Sch Phys, Parkville, Vic 3010, Australia
来源
PHYSICAL REVIEW APPLIED | 2022年 / 18卷 / 06期
关键词
SPIN;
D O I
10.1103/PhysRevApplied.18.064062
中图分类号
O59 [应用物理学];
学科分类号
摘要
Superconducting flux qubits are promising candidates for the physical realization of a scalable quantum processor. Indeed, these circuits may have both a small decoherence rate and a large anharmonicity. These properties enable the application of fast quantum gates with high fidelity and reduce scaling limitations due to frequency crowding. The major difficulty of flux qubits' design consists of controlling precisely their transition energy-the so-called qubit gap-while keeping long and reproducible relaxation times. Solving this problem is challenging and requires extremely good control of e-beam lithography, oxidation parameters of the junctions, and sample surface. Here we present measurements of a large batch of flux qubits and demonstrate a high level of reproducibility and control of qubit gaps (+/- 0.6 GHz), relaxation times (15-20 mu s), and pure echo dephasing times (15-30 mu s). These results open the way for potential applications in the fields of quantum hybrid circuits and quantum computation.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Magnetic flux noise in superconducting qubits and the gap states continuum
    Dominik Szczęśniak
    Sabre Kais
    Scientific Reports, 11
  • [2] Magnetic flux noise in superconducting qubits and the gap states continuum
    Szczesniak, Dominik
    Kais, Sabre
    SCIENTIFIC REPORTS, 2021, 11 (01)
  • [3] A perspective on superconducting flux qubits
    Dmitriev, A. Yu
    Astafiev, O., V
    APPLIED PHYSICS LETTERS, 2021, 119 (08)
  • [4] Universal Nonadiabatic Control of Small-Gap Superconducting Qubits
    Campbell, Daniel L.
    Shim, Yun-Pil
    Kannan, Bharath
    Winik, Roni
    Kim, David K.
    Melville, Alexander
    Niedzielski, Bethany M.
    Yoder, Jonilyn L.
    Tahan, Charles
    Gustavsson, Simon
    Oliver, William D.
    PHYSICAL REVIEW X, 2020, 10 (04):
  • [5] Controllable coupling of superconducting flux qubits
    van der Ploeg, S. H. W.
    Izmalkov, A.
    van den Brink, Alec Maassen
    Huebner, U.
    Grajcar, M.
    Il'ichev, E.
    Meyer, H. -G.
    Zagoskin, A. M.
    PHYSICAL REVIEW LETTERS, 2007, 98 (05)
  • [6] Superradiance with an ensemble of superconducting flux qubits
    Lambert, Neill
    Matsuzaki, Yuichiro
    Kakuyanagi, Kosuke
    Ishida, Natsuko
    Saito, Shiro
    Nori, Franco
    PHYSICAL REVIEW B, 2016, 94 (22)
  • [7] Gradiometric flux qubits with a tunable gap
    Schwarz, M. J.
    Goetz, J.
    Jiang, Z.
    Niemczyk, T.
    Deppe, F.
    Marx, A.
    Gross, R.
    NEW JOURNAL OF PHYSICS, 2013, 15
  • [8] Hybridization of superconducting flux qubits and diamond ensembles
    Munro, William J.
    Saito, Shiro
    Zhu, Xiaobo
    Matsuzaki, Yuichiro
    Amsuess, Robert
    Kakuyanagi, Kosuke
    Shimo-Oka, Takaaki
    Mizuochi, Norikazu
    Nemoto, Kae
    Semba, Kouichi
    2013 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2013,
  • [9] Galvanic Phase Coupling of Superconducting Flux Qubits
    Kim, Mun-Dae
    APPLIED SCIENCES-BASEL, 2021, 11 (23):
  • [10] Quasiparticle Relaxation of Superconducting Qubits in the Presence of Flux
    Catelani, G.
    Koch, J.
    Frunzio, L.
    Schoelkopf, R. J.
    Devoret, M. H.
    Glazman, L. I.
    PHYSICAL REVIEW LETTERS, 2011, 106 (07)