Penalized logistic regression for high-dimensional DNA methylation data with case-control studies

被引:74
|
作者
Sun, Hokeun [1 ]
Wang, Shuang [1 ]
机构
[1] Columbia Univ, Mailman Sch Publ Hlth, Dept Biostat, New York, NY 10032 USA
关键词
VARIABLE SELECTION; REGULARIZATION; LASSO;
D O I
10.1093/bioinformatics/bts145
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Results: Using simulation studies we demonstrated that the proposed procedure outperforms existing main-stream regularization methods such as lasso and elastic-net when data is correlated within a group. We also applied our method to identify important CpG sites and corresponding genes for ovarian cancer from over 20 000 CpGs generated from Illumina Infinium HumanMethylation27K Beadchip. Some genes identified are potentially associated with cancers.
引用
收藏
页码:1368 / 1375
页数:8
相关论文
共 50 条
  • [41] FDR control and power analysis for high-dimensional logistic regression via StabKoff
    Yuan, Panxu
    Kong, Yinfei
    Li, Gaorong
    STATISTICAL PAPERS, 2024, 65 (05) : 2719 - 2749
  • [42] Insulin Resistance Associated With Differentiated Thyroid Carcinoma: Penalized Conditional Logistic Regression Analysis of a Matched Case-Control Study Data
    Heidari, Zahra
    Abdani, Mahdi
    Mansournia, Mohammad Ali
    INTERNATIONAL JOURNAL OF ENDOCRINOLOGY AND METABOLISM, 2018, 16 (01)
  • [43] A MODEL OF DOUBLE DESCENT FOR HIGH-DIMENSIONAL LOGISTIC REGRESSION
    Deng, Zeyu
    Kammoun, Abla
    Thrampoulidis, Christos
    2020 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2020, : 4267 - 4271
  • [44] Weak Signals in High-Dimensional Logistic Regression Models
    Reangsephet, Orawan
    Lisawadi, Supranee
    Ahmed, Syed Ejaz
    PROCEEDINGS OF THE THIRTEENTH INTERNATIONAL CONFERENCE ON MANAGEMENT SCIENCE AND ENGINEERING MANAGEMENT, VOL 1, 2020, 1001 : 121 - 133
  • [45] Robust adaptive LASSO in high-dimensional logistic regression
    Basu, Ayanendranath
    Ghosh, Abhik
    Jaenada, Maria
    Pardo, Leandro
    STATISTICAL METHODS AND APPLICATIONS, 2024,
  • [46] EXACT CONDITIONAL LOGISTIC-REGRESSION FOR MATCHED CASE-CONTROL STUDIES
    MEHTA, C
    AMERICAN JOURNAL OF EPIDEMIOLOGY, 1993, 138 (08) : 619 - 619
  • [47] FITTING LOGISTIC-REGRESSION MODELS IN STRATIFIED CASE-CONTROL STUDIES
    SCOTT, AJ
    WILD, CJ
    BIOMETRICS, 1991, 47 (02) : 497 - 510
  • [48] LOGISTIC-REGRESSION FOR 2-STAGE CASE-CONTROL DATA
    BRESLOW, NE
    CAIN, KC
    BIOMETRIKA, 1988, 75 (01) : 11 - 20
  • [49] Benefits of dimension reduction in penalized regression methods for high-dimensional grouped data: a case study in low sample size
    Ajana, Soufiane
    Acar, Niyazi
    Bretillon, Lionel
    Hejblum, Boris P.
    Jacqmin-Gadda, Helene
    Delcourt, Cecile
    Berdeaux, Olivier
    Bouton, Sylvain
    Bron, Alain
    Buaud, Benjamin
    Cabaret, Stephanie
    Cougnard-Gregorie, Audrey
    Creuzot-Garcher, Catherine
    Delyfer, Marie-Noelle
    Feart-Couret, Catherine
    Febvret, Valerie
    Gregoire, Stephane
    He, Zhiguo
    Korobelnik, Jean-Francois
    Martine, Lucy
    Merle, Benedicte
    Vaysse, Carole
    BIOINFORMATICS, 2019, 35 (19) : 3628 - 3634
  • [50] Variable Selection via SCAD-Penalized Quantile Regression for High-Dimensional Count Data
    Khan, Dost Muhammad
    Yaqoob, Anum
    Iqbal, Nadeem
    Wahid, Abdul
    Khalil, Umair
    Khan, Mukhtaj
    Abd Rahman, Mohd Amiruddin
    Mustafa, Mohd Shafie
    Khan, Zardad
    IEEE ACCESS, 2019, 7 : 153205 - 153216