HOMOCLINIC ORBITS OF NONPERIODIC SUPERQUADRATIC HAMILTONIAN SYSTEM

被引:7
|
作者
Zhang, Jian [1 ]
Tang, Xianhua [1 ]
Zhang, Wen [1 ]
机构
[1] Cent S Univ, Sch Math & Stat, Changsha 410083, Hunan, Peoples R China
来源
TAIWANESE JOURNAL OF MATHEMATICS | 2013年 / 17卷 / 06期
关键词
Homoclinic orbits; First-order Hamiltonian system; Ground state solutions; Generalized Nehari manifold; EXISTENCE;
D O I
10.11650/tjm.17.2013.3139
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we study the following first-order nonperiodic Hamiltonian system (z) over dot = JH(z)(t, z), where H is an element of C-1 (R x R-2N, R) is the form H(t, z) = 1/2 L(t)z . z + R(t, z). Under weak superquadratic condition on the nonlinearitiy. By applying the generalized Nehari manifold method developed recently by Szulkin and Weth, we prove the existence of homoclinic orbits, which are ground state solutions for above system.
引用
收藏
页码:1855 / 1867
页数:13
相关论文
共 50 条
  • [21] Homoclinic orbits for an unbounded superquadratic
    Jun Wang
    Junxiang Xu
    Fubao Zhang
    Lei Wang
    [J]. Nonlinear Differential Equations and Applications NoDEA, 2010, 17 : 411 - 435
  • [22] HOMOCLINIC ORBITS FOR A CLASS OF HAMILTONIAN SYSTEMS WITH SUPERQUADRATIC OR ASYMPTOTICALLY QUADRATIC POTENTIALS
    Wang, Jun
    Xu, Junxiang
    Zhang, Fubao
    [J]. COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2011, 10 (01) : 269 - 286
  • [23] On the existence of periodic and homoclinic orbits for first order superquadratic Hamiltonian systems
    Adel Daouas
    [J]. Nonlinear Differential Equations and Applications NoDEA, 2013, 20 : 1347 - 1364
  • [24] Homoclinic orbits of a Hamiltonian system
    Y. Ding
    M. Willem
    [J]. Zeitschrift für angewandte Mathematik und Physik ZAMP, 1999, 50 : 759 - 778
  • [25] Homoclinic orbits of a Hamiltonian system
    Ding, YH
    Willem, M
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 1999, 50 (05): : 759 - 778
  • [26] Homoclinic orbits for an unbounded superquadratic
    Wang, Jun
    Xu, Junxiang
    Zhang, Fubao
    Wang, Lei
    [J]. NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2010, 17 (04): : 411 - 435
  • [27] Homoclinic Orbits for a Class of Nonperiodic Hamiltonian Systems with Some Twisted Conditions
    Wang, Qi
    Zhang, Qingye
    [J]. ABSTRACT AND APPLIED ANALYSIS, 2013,
  • [28] THE EXISTENCE OF HOMOCLINIC ORBITS FOR A CLASS OF FIRST-ORDER SUPERQUADRATIC HAMILTONIAN SYSTEMS
    Guo, Chengjun
    Agarwal, Ravi P.
    Wang, Chengjiang
    O'Regan, Donal
    [J]. MEMOIRS ON DIFFERENTIAL EQUATIONS AND MATHEMATICAL PHYSICS, 2014, 61 : 83 - 102
  • [29] MULTI-BUMP HOMOCLINIC ORBITS FOR A CLASS OF HAMILTONIAN SYSTEMS WITH SUPERQUADRATIC POTENTIAL
    Alves, C. O.
    Carriao, P. C.
    Miyagaki, O. H.
    [J]. HOUSTON JOURNAL OF MATHEMATICS, 2010, 36 (03): : 859 - 877
  • [30] Existence and exponential decay of homoclinics in a nonperiodic superquadratic Hamiltonian system
    Ding, Yanheng
    Lee, Cheng
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2009, 246 (07) : 2829 - 2848