HOMOCLINIC ORBITS OF NONPERIODIC SUPERQUADRATIC HAMILTONIAN SYSTEM

被引:7
|
作者
Zhang, Jian [1 ]
Tang, Xianhua [1 ]
Zhang, Wen [1 ]
机构
[1] Cent S Univ, Sch Math & Stat, Changsha 410083, Hunan, Peoples R China
来源
TAIWANESE JOURNAL OF MATHEMATICS | 2013年 / 17卷 / 06期
关键词
Homoclinic orbits; First-order Hamiltonian system; Ground state solutions; Generalized Nehari manifold; EXISTENCE;
D O I
10.11650/tjm.17.2013.3139
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we study the following first-order nonperiodic Hamiltonian system (z) over dot = JH(z)(t, z), where H is an element of C-1 (R x R-2N, R) is the form H(t, z) = 1/2 L(t)z . z + R(t, z). Under weak superquadratic condition on the nonlinearitiy. By applying the generalized Nehari manifold method developed recently by Szulkin and Weth, we prove the existence of homoclinic orbits, which are ground state solutions for above system.
引用
收藏
页码:1855 / 1867
页数:13
相关论文
共 50 条
  • [1] Homoclinic orbits for a nonperiodic Hamiltonian system
    Ding, Yanheng
    Jeanjean, Louis
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2007, 237 (02) : 473 - 490
  • [2] Existence of infinitely many homoclinic orbits for nonperiodic superquadratic Hamiltonian systems
    Wang, Jun
    Zhang, Hui
    Xu, Junxiang
    Zhang, Fubao
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2012, 75 (13) : 4873 - 4883
  • [3] HOMOCLINIC ORBITS OF AN UNBOUNDED SUPERQUADRATIC HAMILTONIAN SYSTEM
    CLEMENT, P
    FELMER, P
    MITIDIERI, E
    [J]. COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1995, 320 (12): : 1481 - 1484
  • [4] Homoclinic orbits of an unbounded superquadratic Hamiltonian system
    Clement, P.
    Felmer, P.
    Mitidieri, E.
    [J]. Comptes Rendus De L'Academie Des Sciences. Serie I, Mathematique, 320 (12):
  • [5] Homoclinic Orbits of Nonperiodic Super Quadratic Hamiltonian System
    Jian Ding
    Junxiang Xu
    Fubao Zhang
    [J]. Acta Applicandae Mathematicae, 2010, 110 : 1353 - 1371
  • [6] Homoclinic Orbits of Nonperiodic Super Quadratic Hamiltonian System
    Ding, Jian
    Xu, Junxiang
    Zhang, Fubao
    [J]. ACTA APPLICANDAE MATHEMATICAE, 2010, 110 (03) : 1353 - 1371
  • [7] Homoclinic Orbits for a Class of Nonperiodic Hamiltonian Systems
    Qin, Wenping
    Zhang, Jian
    Zhao, Fukun
    [J]. ABSTRACT AND APPLIED ANALYSIS, 2012,
  • [8] HOMOCLINIC ORBITS FOR THE FIRST-ORDER HAMILTONIAN SYSTEM WITH SUPERQUADRATIC NONLINEARITY
    Zhang, Wen
    Tang, Xianhua
    Zhang, Jian
    [J]. TAIWANESE JOURNAL OF MATHEMATICS, 2015, 19 (03): : 673 - 690
  • [9] On homoclinic orbits for a class of noncoercive superquadratic Hamiltonian systems
    Timoumi, Mohsen
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2011, 74 (17) : 5892 - 5901
  • [10] Erratum to: Homoclinic orbits for an unbounded superquadratic Hamiltonian systems
    Jun Wang
    Junxiang Xu
    Fubao Zhang
    Lei Wang
    [J]. Nonlinear Differential Equations and Applications NoDEA, 2011, 18 : 115 - 115