Self-dual Z4-codes and Hadamard matrices

被引:6
|
作者
Harada, M [1 ]
机构
[1] Yamagata Univ, Dept Math Sci, Yamagata 9908560, Japan
关键词
self-dual codes over Z(4); Type I codes; Hadamard matrices;
D O I
10.1016/S0012-365X(01)00310-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this note, we investigate Type I codes over Z(4) constructed from Hadamard matrices. As an application, we construct a Type I Z(4)-code with minimum Euclidean weight 16 of length 40. This code is the first example of such a Type I Z(4)-code. This code also gives an example of a 40-dimensional extremal odd unimodular lattice with minimum norm 4. (C) 2002 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:273 / 278
页数:6
相关论文
共 50 条
  • [41] The Constructions of DNA Codes from Linear Self-Dual Codes over Z4
    Feng, B.
    Bai, S. S.
    Chen, B. Y.
    Zhou, X. N.
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON COMPUTER INFORMATION SYSTEMS AND INDUSTRIAL APPLICATIONS (CISIA 2015), 2015, 18 : 496 - 498
  • [42] Self-dual codes over Z4 and unimodular lattices:: A survey
    Harada, M
    Solé, P
    Gaborit, P
    ALGEBRAS AND COMBINATORICS, 1999, : 255 - 275
  • [43] Extensions of Z2Z4-Additive Self-Dual Codes Preserving Their Properties
    Bilal, M.
    Dougherty, S. T.
    Fernandez-Cordoba, C.
    Borges, J.
    2012 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY PROCEEDINGS (ISIT), 2012,
  • [44] Self-dual codes using bisymmetric matrices and group rings
    Gildea, J.
    Kaya, A.
    Korban, A.
    Tylyshchak, A.
    DISCRETE MATHEMATICS, 2020, 343 (11)
  • [45] Self-Dual Cyclic Codes over Z4[u]/⟨u2-1⟩ and Their Applications of Z4-Self-Dual Codes Construction
    Gao, Yun
    Gao, Jian
    Fu, Fang-Wei
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2018, E101A (10) : 1724 - 1729
  • [46] Self-dual codes from orbit matrices and quotient matrices of combinatorial designs
    Crnkovic, Dean
    Mostarac, Nina
    DISCRETE MATHEMATICS, 2018, 341 (12) : 3331 - 3343
  • [47] On the covering radius of Z4-codes and their lattices
    Aoki, T
    Gaborit, P
    Harada, M
    Ozeki, M
    Solé, P
    IEEE TRANSACTIONS ON INFORMATION THEORY, 1999, 45 (06) : 2162 - 2168
  • [48] On involutions in extremal self-dual codes and the dual distance of semi self-dual codes
    Borello, Martino
    Nebe, Gabriele
    FINITE FIELDS AND THEIR APPLICATIONS, 2015, 33 : 80 - 89
  • [49] SELF-DUAL CODES OVER GF(4)
    MACWILLIAMS, FJ
    ODLYZKO, AM
    SLOANE, NJA
    WARD, HN
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 1978, 25 (03) : 288 - 318
  • [50] Self-dual cyclic codes over Z4 of length 4n
    Cao, Yuan
    Cao, Yonglin
    Fu, Fang-Wei
    Wang, Guidong
    APPLICABLE ALGEBRA IN ENGINEERING COMMUNICATION AND COMPUTING, 2022, 33 (01) : 21 - 51