A Methodology for the Performance Evaluation of Inertial Measurement Units

被引:47
|
作者
Sessa, Salvatore [1 ]
Zecca, Massimiliano [3 ,5 ,6 ]
Lin, Zhuohua [1 ,7 ]
Bartolomeo, Luca [2 ,7 ]
Ishii, Hiroyuki [8 ]
Takanishi, Atsuo [4 ,5 ,6 ,7 ]
机构
[1] Waseda Univ, Grad Sch Creat Sci & Engn, Shinjuku Ku, Tokyo 1688480, Japan
[2] Waseda Univ, Grad Sch Adv Sci & Engn, Shinjuku Ku, Tokyo 1688480, Japan
[3] Waseda Univ, Sch Creat Sci & Engn, Shinjuku Ku, Tokyo 1698555, Japan
[4] Waseda Univ, Dept Modern Mech Engn, Shinjuku Ku, Tokyo 1688480, Japan
[5] Waseda Univ, HRI, Shinjuku Ku, Tokyo 1620044, Japan
[6] Waseda Univ, Italy Japan Joint Lab Humanoid & Personal Robot R, Shinjuku Ku, Tokyo 1688480, Japan
[7] Waseda Univ, Global Robot Acad, Shinjuku Ku, Tokyo 1698555, Japan
[8] Waseda Univ, Waseda Res Inst Sci & Engn, Shinjuku Ku, Tokyo 1688480, Japan
关键词
Performance evaluation; Inertial Measurement Units; Motion capture systems; Motion sensors calibration; MOTION-CAPTURE; ORIENTATION; TRACKING; CALIBRATION; POSITION; SYSTEM; TIME;
D O I
10.1007/s10846-012-9772-8
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents a methodology for a reliable comparison among Inertial Measurement Units or attitude estimation devices in a Vicon environment. The misalignment among the reference systems and the lack of synchronization among the devices are the main problems for the correct performance evaluation using Vicon as reference measurement system. We propose a genetic algorithm coupled with Dynamic Time Warping (DTW) to solve these issues. To validate the efficacy of the methodology, a performance comparison is implemented between the WB-3 ultra-miniaturized Inertial Measurement Unit (IMU), developed by our group, with the commercial IMU InertiaCube3 (TM) by InterSense.
引用
收藏
页码:143 / 157
页数:15
相关论文
共 50 条
  • [31] Integrated Stress Sensors for Humidity Performance Drift Analysis and Compensation in Inertial Measurement Units
    Jurgschat, Clemens
    Roewer, Falk
    Toth, Imre
    Ohms, Torsten
    Zimmermann, Andre
    [J]. JOURNAL OF MICROELECTROMECHANICAL SYSTEMS, 2022, 31 (06) : 918 - 926
  • [32] Adaptive Estimation of Measurement Bias in Six Degree of Freedom Inertial Measurement Units: Theory and Preliminary Simulation Evaluation
    Spielvogel, Andrew R.
    Whitcomb, Louis L.
    [J]. 2017 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2017, : 5880 - 5885
  • [33] Hull Structure Monitoring Using Inertial Measurement Units
    Ma, Xianglu
    Qin, Shiqiao
    Wang, Xingshu
    Wu, Wei
    Zheng, Jiaxing
    Pan, Yao
    [J]. IEEE SENSORS JOURNAL, 2017, 17 (09) : 2676 - 2681
  • [34] A low-g accelerometer for inertial measurement units
    Kapser, K
    Aikele, M
    Gottinger, R
    Hartmann, B
    Burghardt, R
    Seidel, H
    [J]. ADVANCED MICROSYSTEMS FOR AUTOMOTIVE APPLICATIONS 2003, 2003, : 349 - 358
  • [35] Calibration and attitude determination with redundant inertial measurement units
    Pittelkau, ME
    [J]. JOURNAL OF GUIDANCE CONTROL AND DYNAMICS, 2005, 28 (04) : 743 - 752
  • [36] Data Fusion Algorithms for Multiple Inertial Measurement Units
    Bancroft, Jared B.
    Lachapelle, Gerard
    [J]. SENSORS, 2011, 11 (07) : 6771 - 6798
  • [37] Calibration Techniques for Skew Redundant Inertial Measurement Units
    Gheorghe, M. V.
    [J]. SENSORS AND ELECTRONIC INSTRUMENTATION ADVANCES (SEIA), 2016, : 72 - 78
  • [38] Quantification of Error Sources with Inertial Measurement Units in Sports
    Kamstra, Haye
    Wilmes, Erik
    van der Helm, Frans C. T.
    [J]. SENSORS, 2022, 22 (24)
  • [39] Advances in ruggedized quartz MEMS inertial measurement units
    Jaffe, Randall
    Aston, Ted
    Madni, Asad M.
    [J]. 2006 IEEE/ION POSITION, LOCATION AND NAVIGATION SYMPOSIUM, VOLS 1-3, 2006, : 390 - +
  • [40] GEOMETRICAL CONFIGURATION ANALYSIS OF REDUNDANT INERTIAL MEASUREMENT UNITS
    Escobar-Alvarez, Hector D.
    Akella, Maruthi R.
    Bishop, Robert H.
    [J]. SPACEFLIGHT MECHANICS 2011, PTS I-III, 2011, 140 : 2213 - +