Block Compressive Sensing in Synthetic Aperture Radar (SAR)

被引:0
|
作者
Kazemi, Peyman [1 ]
Modarres-Hashemi, Mahmood [1 ]
Naghsh, Mohammad Mahdi [1 ]
机构
[1] Isfahan Univ Technol, Dept Elect & Comp Engn, Esfahan 8415683111, Iran
关键词
Synthetic Aperture Radar (SAR); Compressive Sensing (CS); Block Compressive Sensing (BCS); Sparsity; Imaging; RECOVERY; SIGNALS;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
High rate A/D's, heavy computations, large on board memories and downlink throughput are serious problems of high resolution Synthetic Aperture Radar (SAR). Compressive Sensing (CS) theory states that the sparsity or compressibility of a signal makes it possible to reconstruct the signal from a reduced number of samples. In the current paper, the Block Compressive sensing (BCS) is applied to SAR. This work proposes a new framework for SAR imaging in which a reconstruction method called BCS algorithm is used to achieve an excellent resolution with a few number of samples. The suggested technique can reconstruct images well by using nearly 1/3 samples in comparison with other CS image reconstruction methods.
引用
收藏
页码:1324 / 1329
页数:6
相关论文
共 50 条
  • [41] Comments on rendering synthetic aperture radar (SAR) images
    Doerry, Armin W.
    RADAR SENSOR TECHNOLOGY XXV, 2021, 11742
  • [42] Multiband Integrated Synthetic Aperture Radar (SAR) Receiver
    Abu Bakar, Faizah
    Holmberg, Jan
    Nieminen, Tero
    Nehal, Qaiser
    Ukkonen, Pekka
    Saari, Ville
    Halonen, Kari
    Aberg, Markku
    Sundberg, Iiro
    2012 19th IEEE International Conference on Electronics, Circuits and Systems (ICECS), 2012, : 713 - 716
  • [43] Synthetic Aperture Radar (SAR) Meets Deep Learning
    Zhang, Tianwen
    Zeng, Tianjiao
    Zhang, Xiaoling
    REMOTE SENSING, 2023, 15 (02)
  • [44] Geometric invariance for synthetic aperture radar (SAR) sensors
    Velten, VJ
    ALGORITHMS FOR SYNTHETIC APERTURE RADAR IMAGERY V, 1998, 3370 : 176 - 187
  • [45] Automatic registration of Synthetic Aperture Radar (SAR) images
    Luong, HQ
    Gautama, S
    Philips, W
    IGARSS 2004: IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM PROCEEDINGS, VOLS 1-7: SCIENCE FOR SOCIETY: EXPLORING AND MANAGING A CHANGING PLANET, 2004, : 3864 - 3867
  • [46] SYNTHETIC APERTURE RADAR (SAR) IMAGE QUALITY CONSIDERATIONS
    MITCHEL, RH
    MARDER, S
    OPTICAL ENGINEERING, 1982, 21 (01) : 48 - 55
  • [47] On the Applicability of Compressive Sensing on FMCW Synthetic Aperture Radar Data for Sparse Scene Recovery.
    Becquaert, Mathias
    Cristofani, Edison
    Vandewal, Marijke
    2013 10TH EUROPEAN RADAR CONFERENCE (EURAD), 2013, : 9 - 12
  • [48] COMPRESSED SENSING FOR SYNTHETIC APERTURE RADAR IMAGING
    Patel, Vishal M.
    Easley, Glenn R.
    Healy, Dennis M., Jr.
    Chellappa, Rama
    2009 16TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOLS 1-6, 2009, : 2141 - 2144
  • [49] Optimal Sensing Principle of Synthetic Aperture Radar
    Xu, Han-Yang
    Xu, Feng
    Jin, Ya-Qiu
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62 : 1 - 14
  • [50] Remote Sensing of the Earth by Synthetic Aperture Radar
    Leukhin, A. N.
    Bezrodnyi, V. I.
    Voronin, A. A.
    UCHENYE ZAPISKI KAZANSKOGO UNIVERSITETA-SERIYA FIZIKO-MATEMATICHESKIE NAUKI, 2018, 160 (01): : 25 - 41