Perturbation of domain: Singular Riemannian metrics

被引:2
|
作者
Mason, C [1 ]
机构
[1] Kings Coll London, Dept Math, London WC2R 2LS, England
关键词
D O I
10.1112/plms/84.2.473
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:473 / 491
页数:19
相关论文
共 50 条
  • [31] A tailored finite point method for a singular perturbation problem on an unbounded domain
    Han, Houde
    Huang, Zhongyi
    Kellogg, R. Bruce
    JOURNAL OF SCIENTIFIC COMPUTING, 2008, 36 (02) : 243 - 261
  • [32] A Singular Perturbation Approach for Time-Domain Assessment of Phase Margin
    Zhu, J. Jim
    Yang, Xiaojing
    Hodel, A. Scottedward
    2010 AMERICAN CONTROL CONFERENCE, 2010, : 315 - 322
  • [33] On the domain and error characterization in the singular perturbation modeling of closed kinematic chains
    Wang, ZY
    Ghorbel, FH
    Dabney, JB
    PROCEEDINGS OF THE 2004 AMERICAN CONTROL CONFERENCE, VOLS 1-6, 2004, : 493 - 498
  • [34] A CLASS OF CRITICAL RIEMANNIAN METRICS
    PATTERSON, EM
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1981, 23 (APR): : 349 - 358
  • [35] The χ-Hessian Quotient for Riemannian Metrics
    Piscoran, Laurian-Ioan
    Ali, Akram
    Catalin, Barbu
    Alkhaldi, Ali H.
    AXIOMS, 2021, 10 (02) : NA
  • [36] Riemannian metrics on Teichmuller space
    Habermann, L
    Jost, J
    MANUSCRIPTA MATHEMATICA, 1996, 89 (03) : 281 - 306
  • [37] Riemannian approximation of Finsler metrics
    Braides, A
    Buttazzo, G
    Fragalà, I
    ASYMPTOTIC ANALYSIS, 2002, 31 (02) : 177 - 187
  • [38] Properties of the Riemannian Curvature of (α, β)-Metrics
    Cheng X.
    Journal of Mathematical Sciences, 2016, 218 (6) : 724 - 730
  • [39] ON THE LIMITS OF PERIODIC RIEMANNIAN METRICS
    ACERBI, E
    BUTTAZZO, G
    JOURNAL D ANALYSE MATHEMATIQUE, 1983, 43 : 183 - 201
  • [40] Geodesics of Random Riemannian Metrics
    LaGatta, Tom
    Wehr, Jan
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2014, 327 (01) : 181 - 241