On second-order characterizability

被引:3
|
作者
Hyttinen, Tapani [1 ]
Kangas, Kaisa [1 ]
Vaananen, Jouko [1 ,2 ]
机构
[1] Univ Helsinki, Dept Math, Helsinki 00014, Finland
[2] Univ Amsterdam, Inst Log Language & Computat, NL-1090 GE Amsterdam, Netherlands
基金
芬兰科学院;
关键词
Second-order logic; characterizability; infinitary logic;
D O I
10.1093/jigpal/jzs047
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We investigate the extent of second-order characterizable structures by extending Shelah's Main Gap dichotomy to second-order logic. For this end we consider a countable complete first-order theory T. We show that all sufficiently large models of T have a characterization up to isomorphism in the extension of second-order logic obtained by adding a little bit of infinitary logic if and only if T is shallow superstable with NDOP and NOTOP. Our result relies on cardinal arithmetic assumptions. Under weaker assumptions we get consistency results or alternatively results about second-order logic with Henkin semantics. Mathematics Subject Classification: 03C85, 03C75.
引用
收藏
页码:767 / 787
页数:21
相关论文
共 50 条
  • [21] Second-order signature
    Güting, Ralf Hartmut
    SIGMOD Record, 1993, 22 (02) : 277 - 286
  • [22] Second-Order Servification
    Neubauer, Johannes
    Steffen, Bernhard
    SOFTWARE BUSINESS: FROM PHYSICAL PRODUCTS TO SOFTWARE SERVICES AND SOLUTIONS, 2013, 150 : 13 - 25
  • [23] Second-order indeterminacy
    Perugini, M
    BEHAVIORAL AND BRAIN SCIENCES, 2003, 26 (02) : 171 - +
  • [24] On Second-Order Morality
    Pavlakos, George
    JURISPRUDENCE-AN INTERNATIONAL JOURNAL OF LEGAL AND POLITICAL THOUGHT, 2015, 6 (02): : 276 - 297
  • [25] ON SECOND-ORDER WAVEFUNCTIONS
    ROBERTS, EM
    JOURNAL OF CHEMICAL PHYSICS, 1965, 43 (04): : 1431 - &
  • [26] ON SECOND-ORDER RECURRENCES
    WYLER, O
    AMERICAN MATHEMATICAL MONTHLY, 1965, 72 (05): : 500 - +
  • [27] Second-order generalization
    Neville, RS
    2004 IEEE INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, VOLS 1-4, PROCEEDINGS, 2004, : 949 - 954
  • [28] Second-order diversity
    Gerken, HK
    HARVARD LAW REVIEW, 2005, 118 (04) : 1099 - 1196
  • [29] SECOND-ORDER FACTORS
    Thurstone, L. L.
    PSYCHOMETRIKA, 1944, 9 (02) : 71 - 100
  • [30] Second-order Lagrangians admitting a second-order Hamilton-Cartan formalism
    Díaz, RD
    Masqué, JM
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2000, 33 (34): : 6003 - 6016