FUSION OF RADARSAT-2 AND COSMO-SKYMED POLARIMETRIC IMAGES TO IMPROVE LAND COVER CLASSIFICATION

被引:0
|
作者
Licciardi, G. A. [1 ]
Pratola, C. [1 ]
Del Frate, F. [1 ]
Schiavon, G. [1 ]
Solimini, D. [1 ]
机构
[1] Grenoble Inst Technol, GIPSA Lab, Grenoble, France
关键词
SAR; Image fusion; Neural Network; classification; SAR;
D O I
10.1109/IGARSS.2012.6352494
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Aim of this paper is to show how fusing SAR images having different characteristics can improve the classification accuracy, in spite of the geometrical problems rising in the fusion operation. To this end, we fused multiple-frequency (Cand X-band), multiple-polarization (HH, HV, VH and VV) and multi-resolution images. The classification has been carried out by a neural network algorithm (NN), in which the backscattering coefficients at each polarization for each image have been fused to form the input to the classifier. The evaluation of the classification accuracy has been performed in terms of overall accuracy, per class accuracy and Kappa coefficient. The obtained results show not only an enhancement of the classification accuracies, but also that more land cover classes can be better identified with respect to a single acquisition.
引用
收藏
页码:4978 / 4981
页数:4
相关论文
共 50 条
  • [21] THE POTENTIAL OF COSMO-SKYMED SAR IMAGES IN MAPPING SNOW COVER AND SNOW WATER EQUIVALENT
    Pettinato, S.
    Santi, E.
    Brogioni, M.
    Paloscia, S.
    Pampaloni, P.
    Palchetti, E.
    Shi, Jianchen
    Xiong, Chuan
    2011 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2011, : 2733 - 2736
  • [22] MULTITEMPORAL RADARSAT-2 POLARIMETRIC SAR DATA FOR URBAN LAND-COVER MAPPING
    Niu, X.
    Ban, Y.
    100 YEARS ISPRS ADVANCING REMOTE SENSING SCIENCE, PT 1, 2010, 38 : 175 - 180
  • [23] Multitemporal RADARSAT-2 Polarimetric SAR Data for Urban Land-Cover Mapping
    Gao, Liang
    Ban, Yifang
    SIXTH INTERNATIONAL SYMPOSIUM ON DIGITAL EARTH: DATA PROCESSING AND APPLICATIONS, 2010, 7841
  • [24] Analysis on the Effectiveness of Multi-temporal COSMO-SkyMed® Images for crop classification
    Guarini, Rocchina
    Bruzzone, Lorenzo
    Santoni, Massimo
    Dini, Luigi
    IMAGE AND SIGNAL PROCESSING FOR REMOTE SENSING XXI, 2015, 9643
  • [25] Large area robust identification of snow cover from multitemporal COSMO-SkyMed images
    Pettinato, S.
    Santi, E.
    Paloscia, S.
    Aiazzi, B.
    Baronti, S.
    Palchetti, E.
    Garzelli, A.
    SAR IMAGE ANALYSIS, MODELING, AND TECHNIQUES XV, 2015, 9642
  • [26] Object-oriented fusion of RADARSAT-2 polarimetric synthetic aperture radar and HJ-1A multispectral data for land-cover classification
    Xiao, Yan
    Jiang, Qigang
    Wang, Bin
    Li, Yuanhua
    Liu, Shu
    Cui, Can
    JOURNAL OF APPLIED REMOTE SENSING, 2016, 10
  • [27] Multi-Temporal Polarimetric RADARSAT-2 for Land Cover Monitoring in Northeastern Ontario, Canada
    Cable, Jeffrey W.
    Kovacs, John M.
    Shang, Jiali
    Jiao, Xianfeng
    REMOTE SENSING, 2014, 6 (03): : 2372 - 2392
  • [28] Snow cover area identification by using a change detection method applied to COSMO-SkyMed images
    Pettinato, Simone
    Santi, Emanuele
    Paloscia, Simonetta
    Aiazzi, Bruno
    Baronti, Stefano
    Garzelli, Andrea
    JOURNAL OF APPLIED REMOTE SENSING, 2014, 8
  • [29] Merchant Vessel Classification Based on Scattering Component Analysis for COSMO-SkyMed SAR Images
    Zhang, Hong
    Tian, Xiaojuan
    Wang, Chao
    Wu, Fan
    Zhang, Bo
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2013, 10 (06) : 1275 - 1279
  • [30] Seasonal Snow Cover Mapping in Alpine Areas Through Time Series of COSMO-SkyMed Images
    Notarnicola, C.
    Ratti, R.
    Maddalena, V.
    Schellenberger, T.
    Ventura, B.
    Zebisch, M.
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2013, 10 (04) : 716 - 720