Local influence in elliptical linear regression models

被引:53
|
作者
Galea, M
Paula, GA
Bolfarine, H
机构
[1] UNIV VALPARAISO, VALPARAISO, CHILE
[2] UNIV SAO PAULO, BR-05508 SAO PAULO, BRAZIL
来源
STATISTICIAN | 1997年 / 46卷 / 01期
关键词
diagnostic; influence; likelihood displacement; multivariate symmetric distributions;
D O I
10.1111/1467-9884.00060
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Influence diagnostic methods are extended in this paper to elliptical linear models. These include several symmetric multivariate distributions such as the normal, Student t-, Cauchy and logistic distributions, among others. For a particular perturbation scheme and for the likelihood displacement the diagnostics agree with those developed for the normal linear regression model by Cook when the coefficients and the scale parameter are treated separately. This result shows the invariance of the diagnostics with respect to the induced model in the elliptical linear family. However, if the coefficients and the scale parameter are treated jointly we have a different diagnostic for each induced model, which makes this approach helpful for selecting the less sensitive model in the elliptical linear family An example on the salinity of water is given for illustration.
引用
收藏
页码:71 / 79
页数:9
相关论文
共 50 条
  • [21] Local influence in linear mixed models
    Lesaffre, E
    Verbeke, G
    [J]. BIOMETRICS, 1998, 54 (02) : 570 - 582
  • [22] On influence diagnostics in elliptical multivariate regression models with equicorrelated random errors
    Ibacache-Pulgar, German
    Paula, Gilberto A.
    Galea, Manuel
    [J]. STATISTICAL METHODOLOGY, 2014, 16 : 14 - 31
  • [23] ENVELOPES FOR ELLIPTICAL MULTIVARIATE LINEAR REGRESSION
    Forzani, Liliana
    Su, Zhihua
    [J]. STATISTICA SINICA, 2021, 31 (01) : 301 - 332
  • [24] Expected local influence in the normal linear regression model
    Cadigan, NG
    Farrell, PJ
    [J]. STATISTICS & PROBABILITY LETTERS, 1999, 41 (01) : 25 - 30
  • [25] Simple regression in view of elliptical models
    Arashi, M.
    Tabatabaey, S. M. M.
    Soleimani, H.
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2012, 437 (07) : 1675 - 1691
  • [26] Correcting the influence of autocorrelated errors in linear regression models
    Daniela, Ditu
    [J]. 9TH ROEDUNET IEEE INTERNATIONAL CONFERENCE, 2010, : 140 - 144
  • [27] ASSESSING LOCAL INFLUENCE IN RESTRICTED REGRESSION-MODELS
    PAULA, GA
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 1993, 16 (01) : 63 - 79
  • [28] Assessing Influence on the Liu Estimates in Linear Regression Models
    Ullah, M. A.
    Pasha, G. R.
    Aslam, M.
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2013, 42 (17) : 3100 - 3116
  • [29] Local influence in regression models for the detection of analytical bias
    de Castro, Mario
    Galea-Rojas, Manuel
    Bolfarine, Heleno
    de Castilho, Marcio V.
    [J]. CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2006, 83 (02) : 139 - 147
  • [30] Local influence for generalized linear mixed models
    Zhu, HT
    Lee, SY
    [J]. CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2003, 31 (03): : 293 - 309