Quasi-one-dimensional tomography

被引:7
|
作者
Gureyev, TE [1 ]
Evans, R [1 ]
Stuart, SA [1 ]
Cholewa, M [1 ]
机构
[1] UNIV MELBOURNE,SCH PHYS,PARKVILLE,VIC 3052,AUSTRALIA
关键词
D O I
10.1364/JOSAA.13.000735
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
A method of tomographic reconstruction is proposed that uses a priori known anisotropy of layered samples to reduce the amount of necessary projection data significantly. We show that an anisotropic scanning geometry, in accordance with the known anisotropy of a sample, allows the accurate reconstruction of the sample from the data of only a few angular projections with sufficiently fine translational step. A generic model for a particular class of samples with layered structure is presented, and the corresponding reconstruction algorithm is developed and tested on simulated and experimental data. (C) 1996 Optical Society of America
引用
收藏
页码:735 / 742
页数:8
相关论文
共 50 条
  • [31] Phonon scattering in quasi-one-dimensional structure
    Bourahla, B.
    Nafa, O.
    Tigrine, R.
    PHYSICA B-CONDENSED MATTER, 2011, 406 (04) : 725 - 730
  • [32] CORRELATIONS AND PLASMONS IN QUASI-ONE-DIMENSIONAL METALS
    CAMPOS, VB
    HIPOLITO, O
    LOBO, R
    PHYSICA STATUS SOLIDI B-BASIC RESEARCH, 1977, 81 (02): : 657 - 663
  • [33] Galvanomagnetic properties of quasi-one-dimensional superconductors
    1600, American Inst of Physics, Woodbury, NY, USA (76):
  • [34] Polymeric quasi-one-dimensional platinum compounds
    Bremi, J
    Fontana, M
    Caseri, W
    Smith, P
    MACROMOLECULAR SYMPOSIA, 2006, 235 : 80 - 88
  • [35] Intersubband plasmons in a quasi-one-dimensional system
    Vitlina, R. Z.
    Magarill, L. I.
    Chaplik, A. V.
    JETP LETTERS, 2010, 92 (10) : 692 - 695
  • [36] HOPPING CONDUCTION IN QUASI-ONE-DIMENSIONAL SYSTEMS
    WEBB, RA
    FOWLER, AB
    HARTSTEIN, A
    WAINER, JJ
    SURFACE SCIENCE, 1986, 170 (1-2) : 14 - 27
  • [37] The Riemann problem in the quasi-one-dimensional approximation
    M. V. Abakumov
    Yu. P. Popov
    P. V. Rodionov
    Computational Mathematics and Mathematical Physics, 2015, 55 : 1356 - 1369
  • [38] MICROWAVE RESPONSE OF QUASI-ONE-DIMENSIONAL CONDUCTORS
    POEHLER, TO
    BLOCH, AN
    BOHANDY, J
    COWAN, DO
    WALATKA, VV
    TOMKIEWICZ, Y
    GARROD, D
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1975, 20 (03): : 440 - 440
  • [39] FLUCTUATION EFFECTS IN QUASI-ONE-DIMENSIONAL SUPERCONDUCTORS
    SCHULZ, HJ
    PHYSICA B & C, 1981, 108 (1-3): : 1179 - 1180
  • [40] COMMENSURABILITY RESONANCE IN QUASI-ONE-DIMENSIONAL CONDUCTORS
    LEBED, AG
    JOURNAL DE PHYSIQUE I, 1994, 4 (03): : 351 - 355