A Fast Three-Dimensional Protocol for Low-Field Laplace NMR in Porous Media

被引:8
|
作者
Zhang, Z. F. [1 ]
Xiao, L. Z. [1 ]
Liu, H. B. [1 ]
Deng, F. [1 ]
Li, X. [1 ]
An, T. L. [1 ]
Anferov, V. [1 ]
Anferova, S. [1 ]
机构
[1] China Univ Petr, State Key Lab Petr Resources & Prospecting, Beijing 102249, Peoples R China
基金
中国国家自然科学基金;
关键词
1ST KIND; RELAXATION; DIFFUSION; PORE;
D O I
10.1007/s00723-013-0451-0
中图分类号
O64 [物理化学(理论化学)、化学物理学]; O56 [分子物理学、原子物理学];
学科分类号
070203 ; 070304 ; 081704 ; 1406 ;
摘要
Three-dimensional (3-D) nuclear magnetic resonance (NMR) experiments reflect material structure, such as physical array of porous media and chemical compositions of complex fluids. However, a huge database is acquired in multi-dimensional NMR and obstructs the extraction of this information in a proper manner. In this paper, a new fast 3-D Laplace inversion procedure is introduced which contains a specially designed 3-D pulse sequence to acquire the data responding to interesting NMR properties simultaneously and efficient data-processing algorithm referring this pulse sequence. A 3-D NMR experiment in low-field on water-saturated synthetic porous sample is presented to demonstrate the validity of the designed 3-D inverse Laplace algorithm.
引用
收藏
页码:849 / 857
页数:9
相关论文
共 50 条
  • [21] Structure of drying fronts in three-dimensional porous media
    Shokri, Nima
    Sahimi, Muhammad
    PHYSICAL REVIEW E, 2012, 85 (06):
  • [22] Resurgence flows in three-dimensional periodic porous media
    Adler, Pierre M.
    Mityushev, Vladimir V.
    PHYSICAL REVIEW E, 2010, 82 (01):
  • [23] Three-dimensional convection of binary mixtures in porous media
    Umla, R.
    Augustin, M.
    Huke, B.
    Luecke, M.
    PHYSICAL REVIEW E, 2011, 84 (05):
  • [24] Three-Dimensional Simulations of Biofilm Growth in Porous Media
    von der Schulenburg, D. A. Graf
    Pintelon, T. R. R.
    Picioreanu, C.
    Van Loosdrecht, M. C. M.
    Johns, M. L.
    AICHE JOURNAL, 2009, 55 (02) : 494 - 504
  • [25] Thermal convection in three-dimensional fractured porous media
    Mezon, C.
    Mourzenko, V. V.
    Thovert, J. -F.
    Antoine, R.
    Fontaine, F.
    Finizola, A.
    Adler, P. M.
    PHYSICAL REVIEW E, 2018, 97 (01)
  • [26] Three-dimensional model of biofilm growth in porous media
    von der Schulenburg, D. A. Graf
    Gladden, L. F.
    Johns, M. L.
    Picioreanu, C.
    van Loosdrecht, M. C. M.
    JOURNAL OF BIOTECHNOLOGY, 2008, 136 : S493 - S493
  • [27] Three-dimensional imaging of multiphase flow in porous media
    Turner, ML
    Knüfing, L
    Arns, CH
    Sakellariou, A
    Senden, TJ
    Sheppard, AP
    Sok, RM
    Limaye, A
    Pinczewski, WV
    Knackstedt, MA
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2004, 339 (1-2) : 166 - 172
  • [28] A Stochastic Model of Transport in Three-Dimensional Porous Media
    Cyril Fleurant
    Jan van der Lee
    Mathematical Geology, 2001, 33 : 449 - 474
  • [29] A stochastic model of transport in three-dimensional porous media
    Fleurant, C
    van der Lee, J
    MATHEMATICAL GEOLOGY, 2001, 33 (04): : 449 - 474
  • [30] Three-dimensional local porosity analysis of porous media
    Universitaet Stuttgart, Stuttgart, Germany
    Phys A, 3-4 (221-241):