Seeing the unseen by remote sensing: satellite imagery applied to species distribution modelling

被引:10
|
作者
Rocchini, Duccio [1 ]
机构
[1] Fdn Edmund Mach, Res & Innovat Ctr, Dept Biodivers & Mol Ecol, GIS & Remote Sensing Unit, I-38010 San Michele All Adige, TN, Italy
关键词
BETA DIVERSITY;
D O I
10.1111/jvs.12029
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Remotely-sensed proxies have been acknowledged as powerful tools for estimating species spatial distributions, whatever the taxonomic group being considered. Jiang et al. (2013) provide a robust example of seeing the unseen by remote sensing, predicting the distribution of epiphyllous liverworts from SPOT Vegetation remotely-sensed data.
引用
收藏
页码:209 / 210
页数:2
相关论文
共 50 条
  • [41] Revealing the Unseen: A Single-Stage Attention Based Occluded Object Detection Model in Remote Sensing Imagery
    Saini, Nandini
    Chattopadhyay, Chiranjoy
    Das, Debasis
    PATTERN RECOGNITION AND MACHINE INTELLIGENCE, PREMI 2023, 2023, 14301 : 540 - 547
  • [42] Potential of remote sensing to predict species invasions: A modelling perspective
    Rocchini, Duccio
    Andreo, Veronica
    Foerster, Michael
    Garzon-Lopez, Carol Ximena
    Gutierrez, Andrew Paul
    Gillespie, Thomas W.
    Hauffe, Heidi C.
    He, Kate S.
    Kleinschmit, Birgit
    Mairota, Paola
    Marcantonio, Matteo
    Metz, Markus
    Nagendra, Harini
    Pareeth, Sajid
    Ponti, Luigi
    Ricotta, Carlo
    Rizzoli, Annapaola
    Schaab, Gertrud
    Zebisch, Marc
    Zorer, Roberto
    Neteler, Markus
    PROGRESS IN PHYSICAL GEOGRAPHY-EARTH AND ENVIRONMENT, 2015, 39 (03): : 283 - 309
  • [43] Domain Adaptable Self-supervised Representation Learning on Remote Sensing Satellite Imagery
    Chopra, Muskaan
    Chhipa, Prakash Chandra
    Mengi, Gopal
    Gupta, Varun
    Liwicki, Marcus
    2023 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, IJCNN, 2023,
  • [44] Hash-Based Deep Learning Approach for Remote Sensing Satellite Imagery Detection
    Gadamsetty, Samhitha
    Ch, Rupa
    Ch, Anusha
    Iwendi, Celestine
    Gadekallu, Thippa Reddy
    WATER, 2022, 14 (05)
  • [45] Categorisation by Leveraging CNNs and Remote Sensing Satellite Imagery for Crop Analysis in Arid Environments
    Malhan A.
    Chavan Y.R.
    Swamikan B.
    Gupta M.V.
    Bobade S.
    Remote Sensing in Earth Systems Sciences, 2024, 7 (2) : 66 - 79
  • [46] A comparison of satellite hyperspectral and multispectral remote sensing imagery for improved classification and mapping of vegetation
    Govender, M.
    Chetty, K.
    Naiken, V.
    Bulcock, H.
    WATER SA, 2008, 34 (02) : 147 - 154
  • [47] Integrating Drone Imagery into High Resolution Satellite Remote Sensing Assessments of Estuarine Environments
    Gray, Patrick C.
    Ridge, Justin T.
    Poulin, Sarah K.
    Seymour, Alexander C.
    Schwantes, Amanda M.
    Swenson, Jennifer J.
    Johnston, David W.
    REMOTE SENSING, 2018, 10 (08)
  • [48] EFFICIENT REMOTE SENSING TRANSFORMER FOR COASTLINE DETECTION WITH SENTINEL-2 SATELLITE IMAGERY
    Wang, Yuji
    Zhao, Ruojun
    Sun, Zijun
    IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2023, : 5439 - 5442
  • [49] Remote sensing of UK snow covers using multi-sensor satellite imagery
    Kelly, R
    REMOTE SENSING AND HYDROLOGY 2000, 2001, (267): : 72 - 75
  • [50] Applications of satellite imagery, remote sensing and computer visualizations: Observing the Earth visualizing the future
    Moore, JD
    Waters, SE
    IGARSS 2002: IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM AND 24TH CANADIAN SYMPOSIUM ON REMOTE SENSING, VOLS I-VI, PROCEEDINGS: REMOTE SENSING: INTEGRATING OUR VIEW OF THE PLANET, 2002, : 530 - 532