Partial H?lder regularity for solutions of a class of cross-diffusion systems with entropy structure

被引:0
|
作者
Braukhoff, Marcel [1 ]
Raithel, Claudia [2 ]
Zamponi, Nicola [2 ]
机构
[1] Heinrich Heine Univ, Univ Str 1, D-40225 Dusseldorf, Germany
[2] Tech Univ Wien, Wiedner Hauptstr 8-10, A-1040 Vienna, Austria
来源
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES | 2022年 / 166卷
基金
奥地利科学基金会;
关键词
Cross -diffusion systems; Entropy methods; Partial H?lder regularity; Maxwell -Stefan system; Shigesada-Kawasaki-Teramoto model; KAWASAKI-TERAMOTO MODEL; KELLER-SEGEL MODEL; WEAK SOLUTIONS; GLOBAL EXISTENCE; POPULATION-MODEL; AGGREGATION; UNIQUENESS; TIME;
D O I
10.1016/j.matpur.2022.07.006
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article we show a C0, alpha-partial regularity result for solutions of a certain class of cross-diffusion systems with entropy structure. Under slightly more stringent conditions on the system, we are able to obtain a C1,alpha-partial regularity result. Amongst others, our results yield the partial C1,alpha-regularity of weak solutions of the Maxwell-Stefan system, as well as the partial C1,alpha-regularity of bounded weak solutions of the Shigesada-Kawasaki-Teramoto model. The classical partial regularity theory for nonlinear parabolic systems as developed by Giaquinta and Struwe in the 80s proceeds by Campanato iteration which relies on energy methods. Our analysis here centers around the insight that, in the Campanato iteration strategy, we can replace the use of energy estimates by "entropy dissipation inequalities " and the use of the squared L2-distance to measure the distance between functions by the use of the "relative entropy ". In order for our strategy to work, it is necessary to regularize the entropy structure of the cross-diffusion system, thereby introducing a new technical tool, which we call the "glued entropy ".(c) 2022 Published by Elsevier Masson SAS.
引用
收藏
页码:30 / 69
页数:40
相关论文
共 50 条
  • [31] Global Structure of Positive Steady-state Solutions for a Class of Predator-Prey Model with Cross-Diffusion
    Ren, Cuiping
    Xue, Pan
    Dong, Yinli
    INTERNATIONAL SYMPOSIUM ON THE FRONTIERS OF BIOTECHNOLOGY AND BIOENGINEERING (FBB 2019), 2019, 2110
  • [32] Hölder Regularity for Solutions of Ultraparabolic Equations in Divergence Form
    Sergio Polidoro
    Maria Alessandra Ragusa
    Potential Analysis, 2001, 14 : 341 - 350
  • [33] PREFACE: ANALYSIS OF CROSS-DIFFUSION SYSTEMS
    Winkler, Michael
    Wrzosek, Dariusz
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2020, 13 (02): : I - I
  • [34] Homogenization of degenerate cross-diffusion systems
    Jungel, Ansgar
    Ptashnyk, Mariya
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2019, 267 (09) : 5543 - 5575
  • [35] Bifurcation of Reaction Cross-Diffusion Systems
    Zou, Rong
    Guo, Shangjiang
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2017, 27 (04):
  • [36] A meeting point of entropy and bifurcations in cross-diffusion herding
    Juengel, Ansgar
    Kuehn, Christian
    Trussardi, Lara
    EUROPEAN JOURNAL OF APPLIED MATHEMATICS, 2017, 28 (02) : 317 - 356
  • [37] On global existence of solutions to a cross-diffusion system
    Van Tuoc, Phan
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 343 (02) : 826 - 834
  • [38] The global existence of solutions for a cross-diffusion system
    Wang Y.
    Acta Mathematicae Applicatae Sinica, 2005, 21 (3) : 519 - 528
  • [39] The Global Existence of Solutions for a Cross-Diffusion System
    娄元,倪维明,吴雅萍
    数学进展, 1996, (03) : 283 - 284
  • [40] WEAK-STRONG UNIQUENESS FOR A CLASS OF DEGENERATE PARABOLIC CROSS-DIFFUSION SYSTEMS
    Laurencot, Philippe
    Matioc, Bogdan-Vasile
    ARCHIVUM MATHEMATICUM, 2023, 59 (02): : 201 - 213