Gradient-free proximal methods with inexact oracle for convex stochastic nonsmooth optimization problems on the simplex

被引:14
|
作者
Gasnikov, A. V. [1 ,2 ]
Lagunovskaya, A. A. [1 ,3 ]
Usmanova, I. N. [1 ,2 ]
Fedorenko, F. A. [1 ]
机构
[1] State Univ, Moscow Inst Phys & Technol, Moscow, Russia
[2] Russian Acad Sci, Inst Informat Transmiss Problems, Kharkevich Inst, Moscow, Russia
[3] Russian Acad Sci, Keldysh Inst Appl Math, Moscow, Russia
基金
俄罗斯基础研究基金会; 俄罗斯科学基金会;
关键词
Stochastic systems;
D O I
10.1134/S0005117916110114
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper we propose a modification of the mirror descent method for non-smooth stochastic convex optimization problems on the unit simplex. The optimization problems considered differ from the classical ones by availability of function values realizations. Our purpose is to derive the convergence rate of the method proposed and to determine the level of noise that does not significantly affect the convergence rate.
引用
收藏
页码:2018 / 2034
页数:17
相关论文
共 50 条
  • [1] Gradient-free proximal methods with inexact oracle for convex stochastic nonsmooth optimization problems on the simplex
    A. V. Gasnikov
    A. A. Lagunovskaya
    I. N. Usmanova
    F. A. Fedorenko
    [J]. Automation and Remote Control, 2016, 77 : 2018 - 2034
  • [2] Faster Gradient-Free Proximal Stochastic Methods for Nonconvex Nonsmooth Optimization
    Huang, Feihu
    Gu, Bin
    Huo, Zhouyuan
    Chen, Songcan
    Huang, Heng
    [J]. THIRTY-THIRD AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTY-FIRST INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE / NINTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2019, : 1503 - 1510
  • [3] Gradient-Free Methods for Deterministic and Stochastic Nonsmooth Nonconvex Optimization
    Lin, Tianyi
    Zheng, Zeyu
    Jordan, Michael I.
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 35, NEURIPS 2022, 2022,
  • [4] Stochastic Intermediate Gradient Method for Convex Problems with Stochastic Inexact Oracle
    Pavel Dvurechensky
    Alexander Gasnikov
    [J]. Journal of Optimization Theory and Applications, 2016, 171 : 121 - 145
  • [5] Stochastic Intermediate Gradient Method for Convex Problems with Stochastic Inexact Oracle
    Dvurechensky, Pavel
    Gasnikov, Alexander
    [J]. JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2016, 171 (01) : 121 - 145
  • [6] Gradient-Free Two-Point Methods for Solving Stochastic Nonsmooth Convex Optimization Problems with Small Non-Random Noises
    A. S. Bayandina
    A. V. Gasnikov
    A. A. Lagunovskaya
    [J]. Automation and Remote Control, 2018, 79 : 1399 - 1408
  • [7] Gradient-Free Two-Point Methods for Solving Stochastic Nonsmooth Convex Optimization Problems with Small Non-Random Noises
    Bayandina, A. S.
    Gasnikov, A. V.
    Lagunovskaya, A. A.
    [J]. AUTOMATION AND REMOTE CONTROL, 2018, 79 (08) : 1399 - 1408
  • [8] Faster Gradient-Free Algorithms for Nonsmooth Nonconvex Stochastic Optimization
    Chen, Lesi
    Xu, Jing
    Luo, Luo
    [J]. INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 202, 2023, 202
  • [9] Inexact proximal stochastic gradient method for convex composite optimization
    Xiao Wang
    Shuxiong Wang
    Hongchao Zhang
    [J]. Computational Optimization and Applications, 2017, 68 : 579 - 618
  • [10] Inexact proximal stochastic gradient method for convex composite optimization
    Wang, Xiao
    Wang, Shuxiong
    Zhang, Hongchao
    [J]. COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2017, 68 (03) : 579 - 618