Bell's inequality, generalized concurrence and entanglement in qubits

被引:5
|
作者
Chang, Po-Yao [1 ]
Chu, Su-Kuan [2 ,3 ]
Ma, Chen-Te [4 ,5 ,6 ,7 ]
机构
[1] Rutgers State Univ, Ctr Mat Theory, Piscataway, NJ 08854 USA
[2] Univ Maryland, NIST, Joint Quantum Inst, College Pk, MD 20742 USA
[3] Univ Maryland, NIST, Joint Ctr Quantum Informat & Comp Sci, College Pk, MD 20742 USA
[4] South China Normal Univ, Sch Phys & Telecommun Engn, Guangzhou 510006, Guangdong, Peoples R China
[5] Univ Cape Town, Dept Math & Appl Math, Lab Quantum Grav & Strings, Private Bag, ZA-7700 Rondebosch, South Africa
[6] Natl Taiwan Univ, Dept Phys, Taipei 10617, Taiwan
[7] Natl Taiwan Univ, Ctr Theoret Sci, Taipei 10617, Taiwan
来源
关键词
Bell's inequality; generalized concurrence; entanglement; qubit; QUANTUM; COMPUTATION;
D O I
10.1142/S0217751X19500325
中图分类号
O57 [原子核物理学、高能物理学];
学科分类号
070202 ;
摘要
It is well known that the maximal violation of the Bell's inequality for a two-qubit system is related to the entanglement formation in terms of a concurrence. However, a generalization of this relation to an n-qubit state has not been found. In this paper, we demonstrate some extensions of the relation between the upper bound of the Bell's violation and a generalized concurrence in several n-qubit states. In particular, we show the upper bound of the Bell's violation can be expressed as a function of the generalized concurrence, if a state can be expressed in terms of two variables. We apply the relation to the Wen-Plaquette model and show that the topological entanglement entropy can be extracted from the maximal Bell's violation.
引用
收藏
页数:35
相关论文
共 50 条
  • [11] Violating Bell's inequality with remotely connected superconducting qubits
    Zhong, Y. P.
    Chang, H. -S.
    Satzinger, K. J.
    Chou, M. -H.
    Bienfait, A.
    Conner, C. R.
    Dumur, E.
    Grebel, J.
    Peairs, G. A.
    Povey, R. G.
    Schuster, D. I.
    Cleland, A. N.
    NATURE PHYSICS, 2019, 15 (08) : 741 - +
  • [12] Violating Bell’s inequality with remotely connected superconducting qubits
    Y. P. Zhong
    H.-S. Chang
    K. J. Satzinger
    M.-H. Chou
    A. Bienfait
    C. R. Conner
    É. Dumur
    J. Grebel
    G. A. Peairs
    R. G. Povey
    D. I. Schuster
    A. N. Cleland
    Nature Physics, 2019, 15 : 741 - 744
  • [13] A note on entanglement of formation and generalized concurrence
    Fei, SM
    Wang, ZX
    Zhao, H
    PHYSICS LETTERS A, 2004, 329 (06) : 414 - 419
  • [14] The Bell inequality: a measure of entanglement?
    Munro, WJ
    Nemoto, K
    White, AG
    JOURNAL OF MODERN OPTICS, 2001, 48 (07) : 1239 - 1246
  • [15] Entanglement, Bell inequality and all that
    Narnhofer, Heide
    Thirring, Walter
    JOURNAL OF MATHEMATICAL PHYSICS, 2012, 53 (09)
  • [16] Entanglement and Bell states in superconducting flux qubits
    Kim, Mun Dae
    Cho, Sam Young
    PHYSICAL REVIEW B, 2007, 75 (13)
  • [17] Bell inequality for qubits based on the Cauchy-Schwarz inequality
    Chen, Jing-Ling
    Deng, Dong-Ling
    PHYSICAL REVIEW A, 2009, 79 (01):
  • [18] Verifying atom entanglement schemes by testing Bell's inequality
    Angelakis, DG
    Beige, A
    Knight, PL
    Munro, WJ
    Tregenna, B
    ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2001, 56 (1-2): : 27 - 34
  • [19] Test of Bell inequality using separated qubits
    不详
    PHYSICS-USPEKHI, 2019, 62 (06) : 630 - 630
  • [20] ATOMIC ENTANGLEMENT AND BELL INEQUALITY VIOLATION
    KUDRYAVTSEV, IK
    KNIGHT, PL
    JOURNAL OF MODERN OPTICS, 1993, 40 (09) : 1673 - 1679