A review of thermo-mechanical fatigue behaviour in polycrystalline nickel superalloys for turbine disc applications

被引:34
|
作者
Lancaster, R. J. [1 ]
Whittaker, M. T. [1 ]
Williams, S. J. [2 ]
机构
[1] Swansea Univ, Swansea SA2 8PP, W Glam, Wales
[2] Rolls Royce Plc, Derby DE24 8BJ, England
基金
英国工程与自然科学研究理事会;
关键词
thermo-mechanical fatigue; nickel superalloys; phase angle; mean stress; NI-BASE SUPERALLOYS; LOW-CYCLE FATIGUE; CRACK-GROWTH; DAMAGE; LIFE; MECHANISM; FRACTURE; ALLOY;
D O I
10.3184/096034013X13630238172260
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Within the gas turbine engine, the high transient thermal stresses resulting from throttle movement from idle to high settings give rise to the phenomenon of thermo-mechanical fatigue (TMF). These effects have been widely explored for turbine blade materials, typically single crystal nickel alloys. More recently however, a combination of thinner disc rims and further increases in turbine entry temperature has led to a situation where TMF in disc materials cannot be ignored. Turbine discs will usually be manufactured from polycrystalline nickel alloys, and as such it is now considered critical that TMF effects in this system of alloys is fully characterised. The current paper seeks to summarise the published work on TMF in polycrystalline nickel alloys for turbine disc applications, whilst introducing recent work at Swansea University. Previous research has concentrated particularly on the differences between in-phase (IP) and out-of-phase (OP) loading. The current work from Swansea indicates that this approach is overly simplistic and that for a complete evaluation of the alloy, intermediate phase angles should also be considered.
引用
收藏
页码:2 / 12
页数:11
相关论文
共 50 条
  • [41] Miniaturised thermo-mechanical fatigue testing
    不详
    MATERIALS & DESIGN, 2000, 21 (01): : 58 - 58
  • [42] Thermo-mechanical and pseudoelastic fatigue of polycrystalline Cu Zn 24 Al 13 alloy
    Sade, Marcos
    Kumpfert, Joerg
    Hornbogen, Erhard
    Zeitschrift fuer Metallkunde/Materials Research and Advanced Techniques, 1988, 79 (10): : 678 - 683
  • [43] Thermo-mechanical fatigue of a polycrystalline superalloy: The effect of phase angle on TMF life and failure
    Pahlavanyali, S.
    Drew, G.
    Rayment, A.
    Rae, C. M. F.
    INTERNATIONAL JOURNAL OF FATIGUE, 2008, 30 (02) : 330 - 338
  • [44] Thermo-mechanical fatigue behavior of a single crystal nickel-based superalloy
    Han, G. M.
    Yu, J. J.
    Sun, X. F.
    Hu, Z. Q.
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2011, 528 (19-20): : 6217 - 6224
  • [45] Thermo-mechanical performance of automotive disc brakes
    Dhir, Daanvir Karan
    MATERIALS TODAY-PROCEEDINGS, 2018, 5 (01) : 1864 - 1871
  • [46] Thermo-mechanical behaviour of nanostructured copper
    Langlois, Cyril
    Guerin, Sandrine
    Sennour, Mohamed
    Hytch, Martin J.
    Duhamel, Cecilie
    Champion, Yannick
    JOURNAL OF ALLOYS AND COMPOUNDS, 2007, 434 (SPEC. ISS.) : 279 - 282
  • [47] Thermo-mechanical behaviour of energy piles
    Amatya, B. L.
    Soga, K.
    Bourne-Webb, P. J.
    Amis, T.
    Laloui, L.
    GEOTECHNIQUE, 2012, 62 (06): : 503 - 519
  • [48] Temperature dependence of thermo-mechanical fatigue behaviour of a martensitic 5 % chromium steel
    Oudin, A
    Rézai-Aria, F
    ADVANCES IN MECHANICAL BEHAVIOUR, PLASTICITY AND DAMAGE, VOLS 1 AND 2, PROCEEDINGS, 2000, : 1053 - 1058
  • [49] Investigations on the thermo-mechanical behaviour of densified veneer wood for cryogenic applications
    Hartig, Jens U.
    Kothe, Christiane
    Eichenauer, Martin Friedrich
    Wehsener, Joerg
    Haller, Peer
    WOOD MATERIAL SCIENCE & ENGINEERING, 2024, 19 (03) : 738 - 744
  • [50] Thermo-mechanical fatigue behaviour of the γ-TiAl alloy TNB-V5
    Roth, M
    Biermann, H
    SCRIPTA MATERIALIA, 2006, 54 (02) : 137 - 141