A Numerical Method for Delayed Fractional-Order Differential Equations

被引:118
|
作者
Wang, Zhen [1 ,2 ]
机构
[1] Shandong Univ Sci & Technol, Coll Informat Sci & Engn, Qingdao 266590, Peoples R China
[2] Nanjing Univ, State Key Lab Novel Software Technol, Nanjing 210093, Jiangsu, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
PREDICTOR-CORRECTOR APPROACH; SYSTEM; DERIVATIVES; CHAOS;
D O I
10.1155/2013/256071
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A numerical method for nonlinear fractional-order differential equations with constant or time-varying delay is devised. The order here is an arbitrary positive real number, and the differential operator is with the Caputo definition. The general Adams-Bashforth-Moulton method combined with the linear interpolation method is employed to approximate the delayed fractional-order differential equations. Meanwhile, the detailed error analysis for this algorithm is given. In order to compare with the exact analytical solution, a numerical example is provided to illustrate the effectiveness of the proposed method.
引用
收藏
页数:7
相关论文
共 50 条
  • [41] Numerical Analysis of the Fractional-Order Nonlinear System of Volterra Integro-Differential Equations
    Sunthrayuth, Pongsakorn
    Ullah, Roman
    Khan, Adnan
    Shah, Rasool
    Kafle, Jeevan
    Mahariq, Ibrahim
    Jarad, Fahd
    JOURNAL OF FUNCTION SPACES, 2021, 2021
  • [42] On the Approximation of Fractional-Order Differential Equations Using Laplace Transform and Weeks Method
    Kamran
    Khan, Sharif Ullah
    Haque, Salma
    Mlaiki, Nabil
    SYMMETRY-BASEL, 2023, 15 (06):
  • [43] Numerical Investigation of Fractional-Order Kawahara and Modified Kawahara Equations by a Semianalytical Method
    Alhejaili, Weaam
    Alhazmi, Sharifah E.
    Nawaz, Rashid
    Ali, Aatif
    Asamoah, Joshua Kiddy Kwasi
    Zada, Laiq
    JOURNAL OF NANOMATERIALS, 2022, 2022
  • [44] A numerical-analytical solution of multi-term fractional-order differential equations
    Kukla, Stanislaw
    Siedlecka, Urszula
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2020, 43 (07) : 4883 - 4894
  • [45] A numerical method for solving variable-order fractional diffusion equations using fractional-order Taylor wavelets
    Vo Thieu, N.
    Razzaghi, Mohsen
    Toan Phan Thanh
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2021, 37 (03) : 2668 - 2686
  • [46] Application of the fractional differential transform method to fractional-order integro-differential equations with nonlocal boundary conditions
    Nazari, D.
    Shahmorad, S.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2010, 234 (03) : 883 - 891
  • [47] Oscillation Results for Solutions of Fractional-Order Differential Equations
    Alzabut, Jehad
    Agarwal, Ravi P.
    Grace, Said R.
    Jonnalagadda, Jagan M.
    FRACTAL AND FRACTIONAL, 2022, 6 (09)
  • [48] Stability analysis of Hilfer fractional-order differential equations
    Abhiram Hegade
    Sachin Bhalekar
    The European Physical Journal Special Topics, 2023, 232 : 2357 - 2365
  • [49] Stability analysis of Hilfer fractional-order differential equations
    Hegade, Abhiram
    Bhalekar, Sachin
    EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2023, 232 (14-15): : 2357 - 2365
  • [50] Modeling and numerical analysis of fractional-order Bloch equations
    Petras, Ivo
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2011, 61 (02) : 341 - 356