Sulfonated porous biomass-derived carbon with superior recyclability for synthesizing ethyl levulinate biofuel

被引:21
|
作者
Zhang, Xiao-Li [1 ]
Li, Ning [1 ]
Qin, Zao [1 ]
Zheng, Xiu-Cheng [1 ]
机构
[1] Zhengzhou Univ, Coll Chem, Zhengzhou 450001, Peoples R China
基金
中国国家自然科学基金;
关键词
Corn stalk biomass; Sulfonated carbon; Hierarchical porous structure; Esterification; Ethyl levulinate; Biofuel; SOLID ACID CATALYST; ACTIVATED CARBON; CORN STALK; BIOETHANOL PRODUCTION; MESOPOROUS CARBON; ESTERIFICATION; PERFORMANCE; CONVERSION; PRETREATMENT; STOVER;
D O I
10.1007/s11164-020-04265-x
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The synthesis of ethyl levulinate (EL) via esterification of levulinic acid (LA) with ethanol, which can be derived from biomass, has become an attractive topic since EL can be applied in many fields, such as fuel additives for petroleum and biodiesel, food additives and fragrance. Herein, the sulfonated porous carbon catalysts derived from the rinds of corn stalk biomass wastes were prepared by using sulfuric acid and phosphoric acid as the sulfonating agent and activator, respectively. The preparation parameters were optimized based on the catalytic activity for LA esterification with ethanol and the acid density of the corresponding catalysts. Also, various reaction factors were optimized to improve the catalytic efficiency over the optimal sulfonated corn stalk-derived carbon (s-CSC). Under the conditions of reaction temperature 80 degrees C, catalyst dosage 5 wt%, ethanol-to-LA molar ratio 5.0:1 and reaction time 8 h, the LA conversion reached 94% and 93% catalyzed by s-CSC and the optimal porous catalyst (s-p-CSC), respectively. Noticeably, benefitting from the hierarchical porous structure with large surface area, s-p-CSC exhibited much better recyclability than s-CSC. This work offers a highly effective solid acid catalyst for the synthesis of biofuel.
引用
收藏
页码:5325 / 5343
页数:19
相关论文
共 50 条
  • [31] Emerging trends in biomass-derived porous carbon materials for hydrogen storage
    Elyasi, Setareh
    Saha, Shalakha
    Hameed, Nishar
    Mahon, Peter J.
    Juodkazis, Saulius
    Salim, Nisa
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2024, 62 : 272 - 306
  • [32] Facile synthesis of biomass-derived hierarchical porous carbon microbeads for supercapacitors
    Ma, Yu-zhu
    Yu, Bao-jun
    Guo, Yan
    Wang, Cheng-yang
    JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2016, 20 (08) : 2231 - 2240
  • [33] Biomass-Derived Porous Carbon Materials for Li-Ion Battery
    Nazhipkyzy, Meruyert
    Maltay, Anar B.
    Askaruly, Kydyr
    Assylkhanova, Dana D.
    Seitkazinova, Aigerim R.
    Mansurov, Zulkhair A.
    NANOMATERIALS, 2022, 12 (20)
  • [34] Biomass-derived porous carbon materials for advanced lithium sulfur batteries
    Poting Liu
    Yunyi Wang
    Jiehua Liu
    Journal of Energy Chemistry, 2019, 34 (07) : 171 - 185
  • [35] Biomass-derived dendritic-like porous carbon aerogels for supercapacitors
    Ma, Yu-zhu
    Guo, Yan
    Zhou, Cong
    Wang, Cheng-yang
    ELECTROCHIMICA ACTA, 2016, 210 : 897 - 904
  • [36] Biomass-derived porous carbon materials: synthesis, designing, and applications for supercapacitors
    Sun, Li
    Gong, Youning
    Li, Delong
    Pan, Chunxu
    GREEN CHEMISTRY, 2022, 24 (10) : 3864 - 3894
  • [37] Biomass-derived porous carbon materials for advanced lithium sulfur batteries
    Liu, Poting
    Wang, Yunyi
    Liu, Jiehua
    JOURNAL OF ENERGY CHEMISTRY, 2019, 34 : 171 - 185
  • [38] Biomass-derived porous carbon electrodes for high-performance supercapacitors
    Yao Sun
    Jianjun Xue
    Shengyang Dong
    Yadi Zhang
    Yufeng An
    Bing Ding
    Tengfei Zhang
    Hui Dou
    Xiaogang Zhang
    Journal of Materials Science, 2020, 55 : 5166 - 5176
  • [39] Synthesis and electrochemical performance of biomass-derived porous carbon materials for supercapacitors
    Yalin Zhang
    Yanqing Cai
    Tianwang Li
    Mengqian Wang
    Xinggang Chen
    Ying Xu
    Journal of Materials Science: Materials in Electronics, 2024, 35
  • [40] Biomass-derived porous graphitic carbon materials for energy and environmental applications
    Chen, Qiang
    Tan, Xiaofei
    Liu, Yunguo
    Liu, Shaobo
    Li, Meifang
    Gu, Yanling
    Zhang, Peng
    Ye, Shujing
    Yang, Zhongzhu
    Yang, Yuanyuan
    JOURNAL OF MATERIALS CHEMISTRY A, 2020, 8 (12) : 5773 - 5811