Analyzing Adversarial Attacks Against Deep Learning for Intrusion Detection in IoT Networks

被引:106
|
作者
Ibitoye, Olakunle [1 ]
Shafiq, Omair [1 ]
Matrawy, Ashraf [1 ]
机构
[1] Carleton Univ, Sch Informat Technol, Ottawa, ON, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Intrusion Detection; Adversarial samples; Feed-forward Neural Networks (FNN); Resilience; Self-normalizing Neural Networks (SNN); Internet of things (IoT);
D O I
10.1109/globecom38437.2019.9014337
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Adversarial attacks have been widely studied in the field of computer vision but their impact on network security applications remains an area of open research. As IoT, 5G and AI continue to converge to realize the promise of the fourth industrial revolution (Industry 4.0), security incidents and events on IoT networks have increased. Deep learning techniques are being applied to detect and mitigate many of such security threats against IoT networks. Feed-forward Neural Networks (FNN) have been widely used for classifying intrusion attacks in IoT networks. In this paper, we consider a variant of the FNN known as the Self-normalizing Neural Network (SNN) and compare its performance with the FNN for classifying intrusion attacks in an IoT network. Our analysis is performed using the BoT-IoT dataset from the Cyber Range Lab of the center of UNSW Canberra Cyber. In our experimental results, the FNN outperforms the SNN for intrusion detection in IoT networks based on multiple performance metrics such as accuracy, precision, and recall as well as multi-classification metrics such as Cohen Cappas score. However, when tested for adversarial robustness, the SNN demonstrates better resilience against the adversarial samples from the IoT dataset, presenting a promising future in the quest for safer and more secure deep learning in IoT networks.
引用
收藏
页数:6
相关论文
共 50 条
  • [41] An Intrusion Detection System on Ping of Death Attacks in IoT Networks
    Asrin Abdollahi
    Mohammad Fathi
    Wireless Personal Communications, 2020, 112 : 2057 - 2070
  • [42] Enhanced and Explainable Deep Learning-Based Intrusion Detection in IoT Networks
    Gyawali, Sohan
    Sartipi, Kamran
    Van Ravesteyn, Benjamin
    Huang, Jiaqi
    Jiang, Yili
    MILCOM 2023 - 2023 IEEE MILITARY COMMUNICATIONS CONFERENCE, 2023,
  • [43] A Novel Deep Learning-Based Intrusion Detection System for IoT Networks
    Awajan, Albara
    COMPUTERS, 2023, 12 (02)
  • [44] Hierarchical Adversarial Attacks Against Graph-Neural-Network-Based IoT Network Intrusion Detection System
    Zhou, Xiaokang
    Liang, Wei
    Li, Weimin
    Yan, Ke
    Shimizu, Shohei
    Wang, Kevin I-Kai
    IEEE INTERNET OF THINGS JOURNAL, 2022, 9 (12) : 9310 - 9319
  • [45] Securing Fog-enabled IoT: federated learning and generative adversarial networks for intrusion detection
    Ting Lei
    Telecommunication Systems, 2025, 88 (1)
  • [46] Defending Deep Learning Models Against Adversarial Attacks
    Mani, Nag
    Moh, Melody
    Moh, Teng-Sheng
    INTERNATIONAL JOURNAL OF SOFTWARE SCIENCE AND COMPUTATIONAL INTELLIGENCE-IJSSCI, 2021, 13 (01): : 72 - 89
  • [47] Deep Learning Defense Method Against Adversarial Attacks
    Wang, Ling
    Zhang, Cheng
    Liu, Jie
    2020 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS (SMC), 2020, : 3667 - 3671
  • [48] ENSEMBLE ADVERSARIAL TRAINING BASED DEFENSE AGAINST ADVERSARIAL ATTACKS FOR MACHINE LEARNING-BASED INTRUSION DETECTION SYSTEM
    Haroon, M. S.
    Ali, H. M.
    NEURAL NETWORK WORLD, 2023, 33 (05) : 317 - 336
  • [49] Generative Adversarial Networks For Launching and Thwarting Adversarial Attacks on Network Intrusion Detection Systems
    Usama, Muhammad
    Asim, Muhammad
    Latif, Siddique
    Qadir, Junaid
    Ala-Al-Fuqaha
    2019 15TH INTERNATIONAL WIRELESS COMMUNICATIONS & MOBILE COMPUTING CONFERENCE (IWCMC), 2019, : 78 - 83
  • [50] Binary Black-Box Adversarial Attacks with Evolutionary Learning against IoT Malware Detection
    Wang, Fangwei
    Lu, Yuanyuan
    Wang, Changguang
    Li, Qingru
    WIRELESS COMMUNICATIONS & MOBILE COMPUTING, 2021, 2021