Beam wander analysis for focused partially coherent beams propagating in turbulence

被引:22
|
作者
Xiao, Xifeng [1 ]
Voelz, David G. [1 ]
机构
[1] New Mexico State Univ, Klipsch Sch Elect & Comp Engn, Las Cruces, NM 88003 USA
关键词
free-space optics; laser communication; focused partially coherent beam; wave optics simulation; beam wander; tracked beam; untracked beam; atmospheric turbulence; GAUSSIAN-BEAM; ATMOSPHERIC-TURBULENCE; WAVE; SCINTILLATION; PROBABILITY; SIMULATION; BEHAVIOR; FADE;
D O I
10.1117/1.OE.51.2.026001
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We extend the theory of beam wander for propagation through atmospheric turbulence to the case of a focused partially coherent beam (PCB). In addition to investigating the beam wander expression, we restate expressions for the beam size, long- and short-time average beam intensity profile, and the on-axis scintillation index of tracked and untracked beams. A wave optics simulation is implemented and the numerical results are compared with corresponding analytic results. The cases examined involve turbulence strengths ranging from C-n(2) = 10(-16) to 10(-14) m(-2/3) and for various horizontal paths ranging from 1 to 10 km. Although the extended analytic theory stems from a study of coherent beams, the simulation results show good agreement with the analytical results for PCBs in fluctuation regimes ranging from weak to intermediate. (c) 2012 Society of Photo-Optical Instrumentation Engineers (SPIE). [DOI: 10.1117/1.OE.51.2.026001]
引用
收藏
页数:8
相关论文
共 50 条