Composite block backstepping trajectory tracking control for disturbed unmanned helicopters

被引:30
|
作者
Wang, Xiangyu [1 ,2 ]
Yu, Xin [1 ,2 ]
Li, Shihua [1 ,2 ]
Liu, Jiyu [3 ]
机构
[1] Southeast Univ, Sch Automat, Nanjing 210096, Jiangsu, Peoples R China
[2] Minist Educ, Key Lab Measurement & Control Complex Syst Engn, Beijing, Peoples R China
[3] Facri, Aviat Key Lab Sci & Technol Aircraft Control, Xian 710065, Shaanxi, Peoples R China
基金
中国国家自然科学基金;
关键词
Unmanned helicopters; Disturbances; Trajectory tracking control; Feedforward-feedback composite control; Blocking backstepping control; Generalized proportional integral observer; OBSERVER-BASED CONTROL; SLIDING-MODE CONTROL; NONLINEAR-SYSTEMS; REJECTION CONTROL; DESIGN; POSITION; ROTORCRAFT;
D O I
10.1016/j.ast.2018.12.019
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
In this paper, the position and yaw angle trajectory tracking control problem is studied for unmanned helicopters subject to both matched and mismatched disturbances. To achieve the trajectory tracking goal, a feedforward-feedback composite control scheme is proposed based on the combination of the generalized proportional integral observer and the block backstepping control techniques. The controller design process mainly consists of two stages. In the first stage, some generalized proportional integral observers are developed for the helicopter system to estimate the mismatched, matched disturbances and their (higher-order) derivatives. In the second stage, the composite controller is designed by integrating the block backstepping control method and the disturbance estimates together. The proposed composite scheme guarantees asymptotic tracking performances for the position and yaw angle of the helicopter to the desired trajectories even in the presence of fast time-varying disturbances. Numerical simulations demonstrate the effectiveness of the proposed composite control scheme. (C) 2018 Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:386 / 398
页数:13
相关论文
共 50 条
  • [31] Quadrotor Helicopters Trajectory Tracking with Stochastic Model Predictive Control
    Yang, Yanhua
    Chen, Yang
    Tang, Chaoquan
    Chai, Li
    2017 AUSTRALIAN AND NEW ZEALAND CONTROL CONFERENCE (ANZCC), 2017, : 166 - 171
  • [32] Design of Trajectory Tracking Controller with Backstepping Method for Quadrotor Unmanned Aerial Vehicles
    Shi, Xiaoyu
    Hu, Binyang
    Yin, Chun
    Cheng, Yuhua
    Huang, Xuegang
    PROCEEDINGS OF THE 30TH CHINESE CONTROL AND DECISION CONFERENCE (2018 CCDC), 2018, : 3124 - 3128
  • [33] Adaptive backstepping trajectory tracking control of robot manipulator
    Hu, Qinglei
    Xu, Liang
    Zhang, Aihua
    JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2012, 349 (03): : 1087 - 1105
  • [34] Backstepping Trajectory Tracking Control of a Quadrotor with Disturbance Rejection
    Rashad, Ramy
    Aboudonia, Ahmed
    El-Badawy, Ayman
    2015 XXV INTERNATIONAL CONFERENCE ON INFORMATION, COMMUNICATION AND AUTOMATION TECHNOLOGIES (ICAT), 2015,
  • [35] Integral Backstepping Control for Trajectory Tracking of a Hybrid Vehicle
    Colmenares-Vazquez, J.
    Marchand, N.
    Castillo, P.
    Gomez-Balderas, J. E.
    Alvarez-Munoz, J. U.
    Tellez-Guzman, J. J.
    2015 INTERNATIONAL CONFERENCE ON UNMANNED AIRCRAFT SYSTEMS (ICUAS'15), 2015, : 209 - 217
  • [36] Adaptive Integral Backstepping Control for Trajectory Tracking of a Quadrotor
    Fan, Yunsheng
    Cao, Yabo
    Li, Tieshan
    2017 4TH INTERNATIONAL CONFERENCE ON INFORMATION, CYBERNETICS AND COMPUTATIONAL SOCIAL SYSTEMS (ICCSS), 2017, : 619 - 624
  • [37] TRAJECTORY TRACKING CONTROL FOR UNMANNED AERIAL VEHICLE
    Zaidi, Jamshaid
    Butt, Hamza
    Nadeem, Zobia
    Waseem, Hasher
    Yousuf, Bilal M.
    Mohsin, Haris
    2018 3RD INTERNATIONAL CONFERENCE ON EMERGING TRENDS IN ENGINEERING, SCIENCES AND TECHNOLOGY (ICEEST), 2018,
  • [38] Trajectory Tracking Control for Small-Scale Unmanned Helicopters with Mismatched Disturbances Based on a Continuous Sliding Mode Approach
    Fang, Xing
    Shang, Yujia
    INTERNATIONAL JOURNAL OF AEROSPACE ENGINEERING, 2019, 2019
  • [39] Backstepping Trajectory Tracking Control for a Spherical Rolling Robot
    Bai, Yang
    Svinin, Mikhail
    Yamamoto, Motoji
    2016 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS 2016), 2016, : 298 - 303
  • [40] Integral terminal sliding-mode integral backstepping adaptive control for trajectory tracking of unmanned surface vehicle
    Dong J.
    Zhao M.
    Cheng M.
    Wang Y.
    Cyber-Physical Systems, 2023, 9 (01) : 77 - 96