Optimal control of discrete stochastic 2-D systems

被引:2
|
作者
Belbas, SA
机构
关键词
D O I
10.1109/SSST.1997.581716
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We obtain dynamic programming equations for the control of a nonlinear stochastic finite-difference equation in ''two-dimensional time''. The stochastic perturbations are random fields of ''white noise'' type on a two-dimensional lattice. We obtain two different types of dynamic programming equations, corresponding to qualitatively different sets of admissible control policies.
引用
收藏
页码:493 / 497
页数:5
相关论文
共 50 条
  • [41] Optimal Vibration Control for Stochastic Discrete-time Systems
    Sun, Hui-Ying
    Tang, Gong-You
    Liu, Yi-Min
    2008 CHINESE CONTROL AND DECISION CONFERENCE, VOLS 1-11, 2008, : 931 - +
  • [42] Discrete Time Optimal Adaptive Control for Linear Stochastic Systems
    Department of Computer Science and Technology, Tsinghua University, Beijing, 100084, China
    不详
    Tsinghua Sci. Tech., 2007, 1 (105-110):
  • [43] Optimal Impulsive Control for Discrete Stochastic Systems Through ADP
    Liang, Mingming
    Liu, Derong
    2022 41ST CHINESE CONTROL CONFERENCE (CCC), 2022, : 2156 - 2161
  • [45] Discrete Time Optimal Adaptive Control for Linear Stochastic Systems
    姜睿
    罗贵明
    Tsinghua Science and Technology, 2007, (01) : 105 - 110
  • [46] Stochastic Optimal Control for Hybrid Systems with Uncertain Discrete Dynamics
    Adamek, Franziska
    Sobotka, Marion
    Stursberg, Olaf
    2008 IEEE INTERNATIONAL CONFERENCE ON AUTOMATION SCIENCE AND ENGINEERING, VOLS 1 AND 2, 2008, : 23 - 28
  • [47] H∞ fault detection for 2-D T-S discrete stochastic fuzzy systems
    Li, Xiaofeng
    Li, Lizhen
    Ye, Shuxia
    INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 2020, 51 (12) : 2258 - 2275
  • [48] Continuous 2-D control systems
    Dymkov, M
    FOURTH INTERNATIONAL WORKSHOP ON MULTIDIMENSIONAL SYSTEMS - NDS 2005, 2005, : 235 - 240
  • [49] NONINTERACTING CONTROL OF 2-D SYSTEMS
    FORNASINI, E
    MARCHESINI, G
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1991, 36 (01) : 90 - 95
  • [50] Hyperstability of 2-D discrete systems with variable coefficients
    Aly, GM
    Mahgoub, H
    Zakzouk, E
    ElAssar, M
    CONTROL AND COMPUTERS, 1996, 24 (02): : 48 - 53