RGB-D Object Tracking: A Particle Filter Approach on GPU

被引:0
|
作者
Choi, Changhyun [1 ]
Christensen, Henrik I. [1 ]
机构
[1] Georgia Inst Technol, Coll Comp, Ctr Robot & Intelligent Machines, Atlanta, GA 30332 USA
来源
2013 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS) | 2013年
关键词
VISUAL TRACKING; KEYPOINT; EDGE;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents a particle filtering approach for 6-DOF object pose tracking using an RGB-D camera. Our particle filter is massively parallelized in a modern GPU so that it exhibits real-time performance even with several thousand particles. Given an a priori 3D mesh model, the proposed approach renders the object model onto texture buffers in the GPU, and the rendered results are directly used by our parallelized likelihood evaluation. Both photometric (colors) and geometric (3D points and surface normals) features are employed to determine the likelihood of each particle with respect to a given RGB-D scene. Our approach is compared with a tracker in the PCL both quantitatively and qualitatively in synthetic and real RGB-D sequences, respectively.
引用
收藏
页码:1084 / 1091
页数:8
相关论文
共 50 条
  • [41] A Multi-Modal RGB-D Object Recognizer
    Faeulhammer, Thomas
    Zillich, Michael
    Prankl, Johann
    Vincze, Markus
    2016 23RD INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2016, : 733 - 738
  • [42] RGB-D Object Classification Using Covariance Descriptors
    Fehr, Duc
    Beksi, William J.
    Zermas, Dimitris
    Papanikolopoulos, Nikolaos
    2014 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2014, : 5467 - 5472
  • [43] Review of local descriptor in RGB-D object recognition
    Rachmawati, Ema, 1600, Universitas Ahmad Dahlan (12):
  • [44] Incremental object learning and robust tracking of multiple objects from RGB-D point set
    Koo, Seongyong
    Lee, Dongheui
    Kwon, Dong-Soo
    JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2014, 25 (01) : 108 - 121
  • [45] An Occlusion-Aware RGB-D Visual Object Tracking Method Based on Siamese Network
    Zhang, Wenli
    Yang, Kun
    Xin, Yitao
    Meng, Rui
    PROCEEDINGS OF 2020 IEEE 15TH INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING (ICSP 2020), 2020, : 327 - 332
  • [46] Application of Transfer Learning in RGB-D Object Recognition
    Kumar, Abhishek
    Shrivatsav, S. Nithin
    Subrahmanyam, G. R. K. S.
    Mishra, Deepak
    2016 INTERNATIONAL CONFERENCE ON ADVANCES IN COMPUTING, COMMUNICATIONS AND INFORMATICS (ICACCI), 2016, : 580 - 584
  • [47] Onboard Dynamic-Object Detection and Tracking for Autonomous Robot Navigation With RGB-D Camera
    Xu, Zhefan
    Zhan, Xiaoyang
    Xiu, Yumeng
    Suzuki, Christopher
    Shimada, Kenji
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2024, 9 (01) : 651 - 658
  • [48] Real-Time Joint Tracking of a Hand Manipulating an Object from RGB-D Input
    Sridhar, Srinath
    Mueller, Franziska
    Zollhoefer, Michael
    Casas, Dan
    Oulasvirta, Antti
    Theobalt, Christian
    COMPUTER VISION - ECCV 2016, PT II, 2016, 9906 : 294 - 310
  • [49] Object Class and Instance Recognition on RGB-D Data
    Seib, Viktor
    Christ-Friedmann, Susanne
    Thierfelder, Susanne
    Paulus, Dietrich
    SIXTH INTERNATIONAL CONFERENCE ON MACHINE VISION (ICMV 2013), 2013, 9067
  • [50] Convolutional Fisher Kernels for RGB-D Object Recognition
    Cheng, Yanhua
    Cai, Rui
    Zhao, Xin
    Huang, Kaiqi
    2015 INTERNATIONAL CONFERENCE ON 3D VISION, 2015, : 135 - 143