Sixth-order symmetric and symplectic exponentially fitted Runge-Kutta methods of the Gauss type

被引:87
|
作者
Calvo, M. [1 ]
Franco, J. M. [1 ]
Montijano, J. I. [1 ]
Randez, L. [1 ]
机构
[1] Univ Zaragoza, Dept Matemat Aplicada, IUMA, E-50009 Zaragoza, Spain
关键词
Exponential fitting; Symplectieness; RK methods; Oscillatory Hamiltonian systems; NUMERICAL-INTEGRATION;
D O I
10.1016/j.cam.2008.01.026
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The construction of exponentially fitted Runge-Kutta (EFRK) methods for the numerical integration of Hamiltonian systems with oscillatory solutions is considered. Based on the symplecticness, symmetry, and exponential fitting properties, two new three-stage RK integrators of the Gauss type with fixed or variable nodes, are obtained. The new exponentially fitted RK Gauss type methods integrate exactly differential systems whose solutions can be expressed as linear combinations of the set of functions {exp(A lambda t).exp(-lambda t)}, lambda is an element of C, and in particular {sin(omega t), cost(omega t)} when lambda = i omega, omega is an element of R. The algebraic order of the new integrators is also analyzed, obtaining that they are of sixth-order like the classical three-stage RK Gauss method. Some numerical experiments show that the new methods are more efficents than the symplectic RK Gauss methods (either standard or else exponentially fitted) proposed in the scientific literature. (C) 2008 Elsevier B. V. All rights reserved.
引用
收藏
页码:387 / 398
页数:12
相关论文
共 50 条
  • [21] Exponentially Fitted Symplectic Runge-Kutta-Nystrom methods
    Monovasilis, Th.
    Kalogiratou, Z.
    Simos, T. E.
    APPLIED MATHEMATICS & INFORMATION SCIENCES, 2013, 7 (01): : 81 - 85
  • [22] Optimal implicit exponentially-fitted Runge-Kutta methods
    Vanden Berghe, G
    Ixaru, LG
    Van Daele, M
    COMPUTER PHYSICS COMMUNICATIONS, 2001, 140 (03) : 346 - 357
  • [23] Exponentially fitted singly diagonally implicit Runge-Kutta methods
    D'Ambrosio, R.
    Paternoster, B.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2014, 263 : 277 - 287
  • [24] Low Storage Exponentially Fitted Explicit Runge-Kutta Methods
    Escartin, J.
    Randez, L.
    NUMERICAL ANALYSIS AND APPLIED MATHEMATICS ICNAAM 2011: INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS, VOLS A-C, 2011, 1389
  • [25] An embedded pair of exponentially fitted explicit Runge-Kutta methods
    Franco, JM
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2002, 149 (02) : 407 - 414
  • [26] Diagonally implicit trigonometrically fitted symplectic Runge-Kutta methods
    Kalogiratou, Z.
    APPLIED MATHEMATICS AND COMPUTATION, 2013, 219 (14) : 7406 - 7412
  • [27] A family of trigonometrically fitted partitioned Runge-Kutta symplectic methods
    Monovasilis, Th.
    Kalogiratou, Z.
    Simos, T. E.
    APPLIED MATHEMATICS AND COMPUTATION, 2009, 209 (01) : 91 - 96
  • [28] Construction of Exponentially Fitted Symplectic Runge–Kutta–Nyström Methods from Partitioned Runge–Kutta Methods
    T. Monovasilis
    Z. Kalogiratou
    T. E. Simos
    Mediterranean Journal of Mathematics, 2016, 13 : 2271 - 2285
  • [29] A SIXTH ORDER DIAGONALLY IMPLICIT SYMMETRIC AND SYMPLECTIC RUNGE-KUTTA METHOD FOR SOLVING HAMILTONIAN SYSTEMS
    Jiang, Chengxiang
    Cong, Yuhao
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2015, 5 (01): : 159 - 167
  • [30] New embedded explicit pairs of exponentially fitted Runge-Kutta methods
    Paris, A.
    Randez, L.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2010, 234 (03) : 767 - 776