Sixth-order symmetric and symplectic exponentially fitted Runge-Kutta methods of the Gauss type

被引:87
|
作者
Calvo, M. [1 ]
Franco, J. M. [1 ]
Montijano, J. I. [1 ]
Randez, L. [1 ]
机构
[1] Univ Zaragoza, Dept Matemat Aplicada, IUMA, E-50009 Zaragoza, Spain
关键词
Exponential fitting; Symplectieness; RK methods; Oscillatory Hamiltonian systems; NUMERICAL-INTEGRATION;
D O I
10.1016/j.cam.2008.01.026
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The construction of exponentially fitted Runge-Kutta (EFRK) methods for the numerical integration of Hamiltonian systems with oscillatory solutions is considered. Based on the symplecticness, symmetry, and exponential fitting properties, two new three-stage RK integrators of the Gauss type with fixed or variable nodes, are obtained. The new exponentially fitted RK Gauss type methods integrate exactly differential systems whose solutions can be expressed as linear combinations of the set of functions {exp(A lambda t).exp(-lambda t)}, lambda is an element of C, and in particular {sin(omega t), cost(omega t)} when lambda = i omega, omega is an element of R. The algebraic order of the new integrators is also analyzed, obtaining that they are of sixth-order like the classical three-stage RK Gauss method. Some numerical experiments show that the new methods are more efficents than the symplectic RK Gauss methods (either standard or else exponentially fitted) proposed in the scientific literature. (C) 2008 Elsevier B. V. All rights reserved.
引用
收藏
页码:387 / 398
页数:12
相关论文
共 50 条
  • [1] Sixth-order symmetric and symplectic exponentially fitted modified Runge-Kutta methods of Gauss type
    Calvo, M.
    Franco, J. M.
    Montijano, J. I.
    Randez, L.
    COMPUTER PHYSICS COMMUNICATIONS, 2008, 178 (10) : 732 - 744
  • [2] Symmetric and symplectic exponentially fitted Runge-Kutta methods of high order
    Calvo, M.
    Franco, J. M.
    Montijano, J. I.
    Randez, L.
    COMPUTER PHYSICS COMMUNICATIONS, 2010, 181 (12) : 2044 - 2056
  • [3] Symplectic exponentially-fitted four-stage Runge-Kutta methods of the Gauss type
    Vanden Berghe, Guido
    Van Daele, Marnix
    NUMERICAL ALGORITHMS, 2011, 56 (04) : 591 - 608
  • [4] Three-Stage Two-Parameter Symplectic, Symmetric Exponentially-Fitted Runge-Kutta Methods of Gauss Type
    Van Daele, M.
    Hollevoet, D.
    Berghe, G. Vanden
    NUMERICAL ANALYSIS AND APPLIED MATHEMATICS, VOLS I-III, 2010, 1281 : 251 - 254
  • [5] Exponentially fitted Runge-Kutta methods
    Vanden Berghe, G
    De Meyer, H
    Van Daele, M
    Van Hecke, T
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2000, 125 (1-2) : 107 - 115
  • [6] Exponentially Fitted Symplectic Runge-Kutta-Nystrom Methods Derived by Partitioned Runge-Kutta Methods
    Monovasilis, Th.
    Kalogiratou, Z.
    Simos, T. E.
    11TH INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2013, PTS 1 AND 2 (ICNAAM 2013), 2013, 1558 : 1181 - 1185
  • [7] Construction of Exponentially Fitted Symplectic Runge-Kutta-Nystrom Methods from Partitioned Runge-Kutta Methods
    Monovasilis, Th
    Kalogiratou, Z.
    Simos, T. E.
    INTERNATIONAL CONFERENCE OF COMPUTATIONAL METHODS IN SCIENCES AND ENGINEERING 2014 (ICCMSE 2014), 2014, 1618 : 843 - 849
  • [8] Construction of Exponentially Fitted Symplectic Runge-Kutta-Nystrom Methods from Partitioned Runge-Kutta Methods
    Monovasilis, T.
    Kalogiratou, Z.
    Simos, T. E.
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2016, 13 (04) : 2271 - 2285
  • [9] Symplectic exponentially-fitted four-stage Runge–Kutta methods of the Gauss type
    Guido Vanden Berghe
    Marnix Van Daele
    Numerical Algorithms, 2011, 56 : 591 - 608
  • [10] Sixth-order exponential Runge-Kutta methods for stiff systems
    Luan, Vu Thai
    Alhsmy, Trky
    APPLIED MATHEMATICS LETTERS, 2024, 153