Spurious detection of phase synchronization in coupled nonlinear oscillators

被引:55
|
作者
Xu, Limei [1 ]
Chen, Zhi
Hu, Kun
Stanley, H. Eugene
Ivanov, Plamen Ch.
机构
[1] Boston Univ, Ctr Polymer Studies, Boston, MA 02215 USA
[2] Boston Univ, Dept Phys, Boston, MA 02215 USA
[3] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA
[4] Harvard Univ, Beth Israel Deaconess Med Ctr, Sch Med, Div Gerontol, Boston, MA 02215 USA
来源
PHYSICAL REVIEW E | 2006年 / 73卷 / 06期
关键词
D O I
10.1103/PhysRevE.73.065201
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Coupled nonlinear systems under certain conditions exhibit phase synchronization, which may change for different frequency bands or with the presence of additive system noise. In both cases, Fourier filtering is traditionally used to preprocess data. We investigate to what extent the phase synchronization of two coupled Rossler oscillators depends on (1) the broadness of their power spectrum, (2) the width of the bandpass filter, and (3) the level of added noise. We find that for identical coupling strengths, oscillators with broader power spectra exhibit weaker synchronization. Further, we find that within a broad bandwidth range, bandpass filtering reduces the effect of noise but can lead to a spurious increase in the degree of phase synchronization with narrowing bandwidth, even when the coupling between the two oscillators remains the same.
引用
收藏
页数:4
相关论文
共 50 条
  • [21] Phase synchronization in coupled oscillators: Dynamical manifestations
    Zheng, ZG
    Hu, G
    Hu, B
    CHINESE PHYSICS LETTERS, 2001, 18 (07) : 874 - 877
  • [22] Stochastic synchronization in globally coupled phase oscillators
    Sakaguchi, H
    PHYSICAL REVIEW E, 2002, 66 (05): : 5 - 056129
  • [23] Phase synchronization in driven and coupled chaotic oscillators
    Rosenblum, MG
    Pikovsky, AS
    Kurths, J
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-FUNDAMENTAL THEORY AND APPLICATIONS, 1997, 44 (10): : 874 - 881
  • [24] Periodic phase synchronization in coupled chaotic oscillators
    Kye, WH
    Lee, DS
    Rim, S
    Kim, CM
    Park, YJ
    PHYSICAL REVIEW E, 2003, 68 (02):
  • [25] Alternate phase synchronization in coupled chaotic oscillators
    Zheng, ZG
    Zhou, CS
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2002, 37 (04) : 419 - 423
  • [26] Scaling and synchronization in a ring of diffusively coupled nonlinear oscillators
    Senthilkumar, D. V.
    Muruganandam, P.
    Lakshmanan, M.
    Kurths, J.
    PHYSICAL REVIEW E, 2010, 81 (06)
  • [27] The effect of nonlinear diffusive coupling on the synchronization of coupled oscillators
    Massihi, Negar
    Parastesh, Fatemeh
    Towhidkhah, Farzad
    Wang, Huihai
    He, Shaobo
    Jafari, Sajad
    EPL, 2024, 146 (02)
  • [28] Explosive synchronization in coupled nonlinear oscillators on multiplex network
    Verma, Umesh Kumar
    Ambika, G.
    PHYSICS LETTERS A, 2022, 450
  • [29] Uncertainty in phase-frequency synchronization of large populations of globally coupled nonlinear oscillators
    Acebrón, JA
    Spigler, R
    PHYSICA D, 2000, 141 (1-2): : 65 - 79
  • [30] Phase dynamics in nonlinear coupled oscillators
    Wang, KG
    Wang, J
    Yang, GJ
    COMMUNICATIONS IN THEORETICAL PHYSICS, 1997, 28 (02) : 179 - 186