Computation of Electromagnetic Fields Scattered From Objects With Uncertain Shapes Using Multilevel Monte Carlo Method

被引:11
|
作者
Litvinenko, Alexander [1 ]
Yucel, Abdulkadir C. [2 ]
Bagci, Hakan [3 ]
Oppelstrup, Jesper [4 ]
Michielssen, Eric [5 ]
Tempone, Raul [3 ,6 ]
机构
[1] Rhein Westfal TH Aachen, D-52062 Aachen, Germany
[2] Nanyang Technol Univ, Sch Elect & Elect Engn, Singapore 639798, Singapore
[3] King Abdullah Univ Sci & Technol, Strateg Res Initiat Uncertainty Quantificat Ctr, Div Comp Elect & Math Sci & Engn, Thuwal 23955, Saudi Arabia
[4] KTH Royal Inst Technol, Dept Math, S-11428 Stockholm, Sweden
[5] Univ Michigan, Dept Elect Engn & Comp Sci, Ann Arbor, MI 48109 USA
[6] Rhein Westfal TH Aachen, D-52062 Aachen, Germany
关键词
Fast Fourier transform (FFT); fast multipole method (FMM); integral equation; multilevel Monte Carlo method (MLMC); numerical methods; uncertain geometry; uncertainty quantification; FAST-MULTIPOLE ALGORITHM; PROBABILISTIC COLLOCATION METHOD; EFFICIENT PARALLELIZATION; WAVE-PROPAGATION; ERROR ANALYSIS; ROUGH-SURFACE; ELLIPTIC PDES; SIMULATION; EQUATIONS; FMM;
D O I
10.1109/JMMCT.2019.2897490
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Computational tools for characterizing electromagnetic scattering from objects with uncertain shapes are needed in various applications ranging from remote sensing at microwave frequencies to Raman spectroscopy at optical frequencies. Often, such computational tools use the Monte Carlo (MC) method to sample a parametric space describing geometric uncertainties. For each sample, which corresponds to a realization of the geometry, a deterministic electromagnetic solver computes the scattered fields. However, for an accurate statistical characterization, the number of MC samples has to be large. In this paper, to address this challenge, the continuation multilevel Monte Carlo (CMLMC) method is used together with a surface integral equation solver. The CMLMC method optimally balances statistical errors due to sampling of the parametric space, and numerical errors due to the discretization of the geometry using a hierarchy of discretizations, from coarse to fine. The number of realizations of finer discretizations can be kept low, with most samples computed on coarser discretizations to minimize computational cost. Consequently, the total execution time is significantly reduced, in comparison to the standard MC scheme.
引用
收藏
页码:37 / 50
页数:14
相关论文
共 50 条
  • [41] Electromagnetic scattering from agricultural vegetation in clusters using Monte Carlo simulation
    Li, SQ
    Wang, WB
    IEEE MICROWAVE AND GUIDED WAVE LETTERS, 1997, 7 (10): : 332 - 334
  • [42] COMPUTATION OF NOISE-IMMUNITY OF COMMUNICATIONS-SYSTEMS USING MONTE-CARLO METHOD
    BELOV, VA
    GERASTOVSKIY, PA
    TELECOMMUNICATIONS AND RADIO ENGINEERING, 1975, 29 (12) : 64 - 67
  • [43] Probabilistic load flow method using approximate Bayesian computation and Markov chain Monte Carlo
    Gao F.
    Yuan C.
    Li Z.
    Qi X.
    Zhuang S.
    Taiyangneng Xuebao/Acta Energiae Solaris Sinica, 2021, 42 (11): : 265 - 272
  • [44] Computation of the blocking probabilities of circuit-switched networks using Monte Carlo method and decomposition
    Li, CY
    Wai, PKA
    IEEE 2000 TENCON PROCEEDINGS, VOLS I-III: INTELLIGENT SYSTEMS AND TECHNOLOGIES FOR THE NEW MILLENNIUM, 2000, : B60 - B65
  • [45] Determination of allowable manipulator link shapes; and task, installation, and obstacle spaces using the Monte Carlo Method
    Tu, Q.
    Rastegar, J.
    Journal of Mechanical Design, Transactions Of the ASME, 1993, 115 (03): : 457 - 461
  • [46] A scaling Monte Carlo method for diffuse reflectance computation from multi-layered media
    Liu, Quan
    Ramanujam, Nirmala
    OPTICAL INTERACTIONS WITH TISSUE AND CELLS XVIII, 2007, 6435
  • [47] INVERSE PROBLEM FOR ELECTROMAGNETIC PROPAGATION IN A DIELECTRIC MEDIUM USING MARKOV CHAIN MONTE CARLO METHOD
    Kojima, Fumio
    Knopp, Jeremy S.
    INTERNATIONAL JOURNAL OF INNOVATIVE COMPUTING INFORMATION AND CONTROL, 2012, 8 (3B): : 2339 - 2346
  • [48] Distributions calculations of radiation load on fluoride glasses in an electromagnetic calorimeter using the Monte Carlo method
    Devitsin, E.G.
    Kozlov, V.A.
    Potashov, S.Yu.
    Sbornik - Kratkie Soobshcheniya po Fizike AN SSSR, 1994, (7-8): : 3 - 6
  • [49] Sensitivity analysis for aviation insecure event using Monte-Carlo method under uncertain conditions
    Chen H.
    Cui L.
    Ren B.
    Zhang J.
    Beijing Hangkong Hangtian Daxue Xuebao/Journal of Beijing University of Aeronautics and Astronautics, 2020, 46 (02): : 414 - 421
  • [50] Electromagnetic scattering from agricultural vegetation in clusters using Monte-Carlo simulation
    Xi'an Jiaotong Univ, Shaanxi, China
    IEEE Microwave Guided Wave Lett, 10 (332-334):