Numerical analysis of tungsten erosion and deposition processes under a DEMO divertor plasma

被引:11
|
作者
Homma, Yuki [1 ]
Hoshino, Kazuo [1 ]
Yamoto, Shohei [2 ]
Asakura, Nobuyuki [1 ]
Tokunaga, Shinsuke [1 ]
Hatayama, Akiyoshi [2 ]
Sakamoto, Yoshiteru [1 ]
Hiwatari, Ryoji [1 ]
Tobita, Kenji [1 ]
机构
[1] Natl Inst Quantum & Radiol Sci & Technol, 2-166 Omotedate Obuchi, Kamikita, Aomori 0393212, Japan
[2] Keio Univ, Grad Sch Sci & Technol, Kohoku Ku, Yokohama, Kanagawa 2238522, Japan
关键词
DEMO; Divertor; Erosion; Ionization length; Thermal force; SIMULATION; TRANSPORT;
D O I
10.1016/j.nme.2017.05.003
中图分类号
TL [原子能技术]; O571 [原子核物理学];
学科分类号
0827 ; 082701 ;
摘要
Erosion reduction of tungsten (W) divertor target is one of the most important research subjects for the DEMO fusion reactor design, because the divertor target has to sustain large fluence of incident particles, composed mainly of fuel ions and seeded impurities, during year-long operation period. Rate of net erosion and deposition on outer divertor target has been studied by using the integrated SOL/divertor plasma code SONIC and the kinetic full-orbit impurity transport code IMPGYRO. Two background plasmas have been used: one is lower density n(i) and higher temperature case and the other is higher ni and lower temperature case. Net erosion has been seen in the lower n(i) case. But in the higher n(i) case, the net erosion has been almost suppressed due to increased return rate and reduced self-sputtering yield. Following two factors are important to understand the net erosion formation: (i) ratio of the 1st ionization length of sputtered W atom to the Larmor gyro radius of W+ ion, (ii) balance between the friction force and the thermal force exerted on W ions. DEMO divertor design should take into account these factors to prevent target erosion. (C) 2017 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license.
引用
下载
收藏
页码:323 / 328
页数:6
相关论文
共 50 条
  • [31] Predictive 3D modelling of erosion and deposition in ITER with ERO2.0: from beryllium main wall, tungsten divertor to full-tungsten device
    Eksaeva, A.
    Kirschner, A.
    Romazanov, J.
    Brezinsek, S.
    Linsmeier, Ch
    Maviglia, F.
    Siccinio, M.
    Ciattaglia, S.
    PHYSICA SCRIPTA, 2022, 97 (01)
  • [32] EXPERIMENTAL SIMULATION AND NUMERICAL MODELING OF VAPOR SHIELD FORMATION AND DIVERTOR MATERIAL EROSION FOR ITER TYPICAL PLASMA DISRUPTIONS
    WURZ, H
    ARKHIPOV, NI
    BAKHTIN, VP
    KONKASHBAEV, I
    LANDMAN, I
    SAFRONOV, VM
    TOPORKOV, DA
    ZHITLUKHIN, AM
    JOURNAL OF NUCLEAR MATERIALS, 1995, 220 : 1066 - 1070
  • [33] Evolution of transiently melt damaged tungsten under ITER-relevant divertor plasma heat loading
    Bardin, S.
    Morgan, T. W.
    Glad, X.
    Pitts, R. A.
    De Temmerman, G.
    JOURNAL OF NUCLEAR MATERIALS, 2015, 463 : 193 - 197
  • [34] NUMERICAL MODELING AND EXPERIMENTAL SIMULATION OF VAPOR SHIELD FORMATION AND DIVERTOR MATERIAL EROSION FOR ITER TYPICAL PLASMA DISRUPTIONS
    WURZ, H
    ARKHIPOV, NI
    BAKHIN, VP
    GOEL, B
    HOBEL, W
    KONKASHBAEV, I
    LANDMAN, I
    PIAZZA, G
    SAFRONOV, VM
    SHERBAKOV, AR
    TOPORKOV, DA
    ZHITLUKHIN, AM
    JOURNAL OF NUCLEAR MATERIALS, 1994, 212 (pt B) : 1349 - 1352
  • [35] CHARACTERISATION OF TUNGSTEN NITRIDE LAYERS AND THEIR EROSION UNDER PLASMA EXPOSURE IN NANO-PSI
    Alegre, D.
    Acsente, T.
    Martin-Rojo, A. B.
    Oyarzabal, E.
    Tabares, F. L.
    Dinescu, G.
    De Temmerman, G.
    Birjega, R.
    Logofatu, C.
    Kovac, J.
    Mozetic, M.
    ROMANIAN REPORTS IN PHYSICS, 2015, 67 (02) : 532 - 546
  • [36] Boron carbide coating deposition on tungsten and testing of tungsten layers and coating under intense plasma load
    A. A. Airapetov
    L. B. Begrambekov
    O. I. Buzhinskiy
    A. V. Grunin
    A. A. Gordeev
    A. M. Zakharov
    A. M. Kalachev
    Ya. A. Sadovskiy
    P. A. Shigin
    Physics of Atomic Nuclei, 2015, 78 : 1640 - 1642
  • [37] Boron carbide coating deposition on tungsten and testing of tungsten layers and coating under intense plasma load
    Airapetov, A. A.
    Begrambekov, L. B.
    Buzhinskiy, O. I.
    Grunin, A. V.
    Gordeev, A. A.
    Zakharov, A. M.
    Kalachev, A. M.
    Sadovskiy, Ya A.
    Shigin, P. A.
    PHYSICS OF ATOMIC NUCLEI, 2015, 78 (14) : 1640 - 1642
  • [38] Failure study of helium-cooled tungsten divertor plasma-facing units tested at DEMO relevant steady-state heat loads
    Ritz, G.
    Hirai, T.
    Norajitra, P.
    Reiser, J.
    Giniyatulin, R.
    Makhankov, A.
    Mazul, I.
    Pintsuk, G.
    Linke, J.
    PHYSICA SCRIPTA, 2009, T138
  • [39] Modelling the processes of cliff-top erosion and deposition under extreme storm waves
    Hansom, J. D.
    Barltrop, N. D. P.
    Hall, A. M.
    MARINE GEOLOGY, 2008, 253 (1-2) : 36 - 50
  • [40] Assessment of erosion, deposition and fuel retention in the JET-ILW divertor from ion beam analysis data
    Catarino, N.
    Barradas, N. P.
    Corregidor, V.
    Widdowson, A.
    Baron-Wiechec, A.
    Coad, J. P.
    Heinola, K.
    Rubel, M.
    Alves, E.
    Abhangi, M.
    Abreu, P.
    Aftanas, M.
    Afzal, M.
    Aggarwal, K. M.
    Aho-Mantila, L.
    Ahonen, E.
    Aints, M.
    Airila, M.
    Albanese, R.
    Alegre, D.
    Alessi, E.
    Aleynikov, P.
    Alfier, A.
    Alkseev, A.
    Allan, P.
    Almaviva, S.
    Alonso, A.
    Alper, B.
    Alsworth, I.
    Alves, D.
    Ambrosino, G.
    Ambrosino, R.
    Amosov, V.
    Andersson, F.
    Andersson Sunden, E.
    Angelone, M.
    Anghel, A.
    Anghel, M.
    Angioni, C.
    Appel, L.
    Apruzzese, G.
    Arena, P.
    Ariola, M.
    Arnichand, H.
    Arnoux, G.
    Arshad, S.
    Ash, A.
    Asp, E.
    Asunta, O.
    Atanasiu, C. V.
    NUCLEAR MATERIALS AND ENERGY, 2017, 12 : 559 - 563