Numerical analysis of tungsten erosion and deposition processes under a DEMO divertor plasma

被引:11
|
作者
Homma, Yuki [1 ]
Hoshino, Kazuo [1 ]
Yamoto, Shohei [2 ]
Asakura, Nobuyuki [1 ]
Tokunaga, Shinsuke [1 ]
Hatayama, Akiyoshi [2 ]
Sakamoto, Yoshiteru [1 ]
Hiwatari, Ryoji [1 ]
Tobita, Kenji [1 ]
机构
[1] Natl Inst Quantum & Radiol Sci & Technol, 2-166 Omotedate Obuchi, Kamikita, Aomori 0393212, Japan
[2] Keio Univ, Grad Sch Sci & Technol, Kohoku Ku, Yokohama, Kanagawa 2238522, Japan
关键词
DEMO; Divertor; Erosion; Ionization length; Thermal force; SIMULATION; TRANSPORT;
D O I
10.1016/j.nme.2017.05.003
中图分类号
TL [原子能技术]; O571 [原子核物理学];
学科分类号
0827 ; 082701 ;
摘要
Erosion reduction of tungsten (W) divertor target is one of the most important research subjects for the DEMO fusion reactor design, because the divertor target has to sustain large fluence of incident particles, composed mainly of fuel ions and seeded impurities, during year-long operation period. Rate of net erosion and deposition on outer divertor target has been studied by using the integrated SOL/divertor plasma code SONIC and the kinetic full-orbit impurity transport code IMPGYRO. Two background plasmas have been used: one is lower density n(i) and higher temperature case and the other is higher ni and lower temperature case. Net erosion has been seen in the lower n(i) case. But in the higher n(i) case, the net erosion has been almost suppressed due to increased return rate and reduced self-sputtering yield. Following two factors are important to understand the net erosion formation: (i) ratio of the 1st ionization length of sputtered W atom to the Larmor gyro radius of W+ ion, (ii) balance between the friction force and the thermal force exerted on W ions. DEMO divertor design should take into account these factors to prevent target erosion. (C) 2017 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license.
引用
收藏
页码:323 / 328
页数:6
相关论文
共 50 条
  • [1] Numerical Analysis of Divertor Plasma for Demo-CREST
    Ishida, M.
    Maeki, K.
    Hiwatari, R.
    Bonnin, X.
    Zhu, S.
    Hatayama, A.
    Schneider, R.
    Coster, D.
    [J]. CONTRIBUTIONS TO PLASMA PHYSICS, 2010, 50 (3-5) : 362 - 367
  • [2] Erosion and deposition in the ASDEX Upgrade tungsten divertor experiment
    Maier, H
    Krieger, K
    Balden, M
    Roth, J
    [J]. JOURNAL OF NUCLEAR MATERIALS, 1999, 266 : 1003 - 1008
  • [3] Simulation of erosion of the tungsten wall by impurities in the divertor plasma
    Sun Zhen-Yue
    Sang Chao-Feng
    Hu Wan-Peng
    Wang De-Zhen
    [J]. ACTA PHYSICA SINICA, 2014, 63 (14)
  • [4] Tungsten coating on JET divertor tiles for erosion/deposition studies
    Lehto, S
    Likonen, J
    Coad, JP
    Ahlgren, T
    Hole, DE
    Mayer, M
    Maier, H
    Kolehmainen, J
    [J]. FUSION ENGINEERING AND DESIGN, 2003, 66-68 : 241 - 245
  • [5] Tungsten erosion under simulation of ITER divertor operation
    Guseva, MI
    Gureev, VM
    Danelyan, LS
    Kolbasov, BN
    Korshunov, SN
    Martynenko, YV
    Petrov, VB
    Stolyarova, VG
    Khripunov, BI
    Vasiliev, VI
    Strunnikov, VM
    [J]. PLASMA DEVICES AND OPERATIONS, 2003, 11 (03): : 141 - 153
  • [6] MEASUREMENTS OF CARBON AND TUNGSTEN EROSION DEPOSITION IN THE DIII-D DIVERTOR
    BASTASZ, R
    WAMPLER, WR
    CUTHBERTSON, JW
    BUCHENAUER, DA
    BROOKS, N
    JUNGE, R
    WEST, WP
    WONG, CPC
    [J]. JOURNAL OF NUCLEAR MATERIALS, 1995, 220 : 310 - 314
  • [7] Evaluation of local erosion and deposition on the W-monoblock of JA-DEMO divertor
    Oya, M.
    Hoshino, K.
    Asakura, N.
    Sakamoto, Y.
    Ohno, N.
    Hanada, K.
    [J]. Nuclear Materials and Energy, 2024, 41
  • [8] Numerical simulation of CFC and tungsten target erosion in ITER-FEAT divertor
    Filatov, V
    [J]. JOURNAL OF NUCLEAR MATERIALS, 2003, 313 : 393 - 398
  • [9] Modelling of tungsten erosion and deposition in the divertor of JET-ILW in comparison to experimental findings
    Kirschner, A.
    Brezinsek, S.
    Huber, A.
    Meigs, A.
    Sergienko, G.
    Tskhakaya, D.
    Borodin, D.
    Groth, M.
    Jachmich, S.
    Romazanov, J.
    Wiesen, S.
    Linsmeier, Ch
    Abduallev, S.
    Abhangi, M.
    Abreu, P.
    Afzal, M.
    Aggarwal, K. M.
    Ahlgren, T.
    Ahn, J. H.
    Aho-Mantila, L.
    Aiba, N.
    Airila, M.
    Albanese, R.
    Aldred, V.
    Alegre, D.
    Alessi, E.
    Aleynikov, P.
    Alfier, A.
    Alkseev, A.
    Allinson, M.
    Alper, B.
    Alves, E.
    Ambrosino, G.
    Ambrosino, R.
    Amicucci, L.
    Amosov, V.
    Sunden, E. Andersson
    Angelone, M.
    Anghel, M.
    Angioni, C.
    Appel, L.
    Appelbee, C.
    Arena, P.
    Ariola, M.
    Arnichand, H.
    Arshad, S.
    Ash, A.
    Ashikawa, N.
    Aslanyan, V.
    Asunta, O.
    [J]. NUCLEAR MATERIALS AND ENERGY, 2019, 18 : 239 - 244
  • [10] Numerical study of the erosion of the EAST tungsten divertor targets caused by edge localized modes
    Huang Yan
    Sun Ji-Zhong
    Sang Chao-Feng
    Ding Fang
    Wang De-Zhen
    [J]. ACTA PHYSICA SINICA, 2014, 63 (03)