Predicting Pedestrian Crossing using Quantile Regression Forests

被引:0
|
作者
Voelz, Benjamin [1 ]
Mielenz, Holger [1 ]
Siegwart, Roland [2 ]
Nieto, Juan [2 ]
机构
[1] Corp Res, Robert Bosch GmbH, D-71272 Renningen, Germany
[2] Swiss Fed Inst Technol, Autonomous Syst Lab, CH-8092 Zurich, Switzerland
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Future automated driving systems will require a comprehensive scene understanding. Considering these systems in an urban environment it becomes immediately clear that reasoning about the future behavior and trajectories of pedestrians represents one major challenge. In this paper we focus on predicting the pedestrians' time-to-cross when approaching a crosswalk. Due to the complexity of the underlying model, we propose a data-driven approach that by means of regression models learns the target variable. Instead of utilizing a standard mean regression, we propose the use of Quantile Regression. We show that this special type of regression is more suited to describe the variability of real world pedestrian trajectories. We examine and compare two approaches: Linear Quantile Regression and Quantile Regression Forest, which is an extended version of Random Forests. We present evaluations with real data and a detailed analysis emphasizing strengths and weaknesses of quantile regression for the target application.
引用
收藏
页码:426 / 432
页数:7
相关论文
共 50 条
  • [1] Quantile regression forests
    Meinshausen, Nicolai
    JOURNAL OF MACHINE LEARNING RESEARCH, 2006, 7 : 983 - 999
  • [2] Time Series Quantile Regression Using Random Forests
    Shiraishi, Hiroshi
    Nakamura, Tomoshige
    Shibuki, Ryotato
    JOURNAL OF TIME SERIES ANALYSIS, 2024, 45 (04) : 639 - 659
  • [3] Ampacity forecasting: an approach using Quantile Regression Forests
    Molinar, Gabriela
    Fan, Lintao Toni
    Stork, Wilhelm
    2019 IEEE POWER & ENERGY SOCIETY INNOVATIVE SMART GRID TECHNOLOGIES CONFERENCE (ISGT), 2019,
  • [4] SIMPLEX QUANTILE REGRESSION WITHOUT CROSSING
    Ando, Tomohiro
    Li, Ker-chau
    ANNALS OF STATISTICS, 2025, 53 (01): : 144 - 169
  • [5] Prediction of heat waves in Pakistan using quantile regression forests
    Khan, Najeebullah
    Shahid, Shamsuddin
    Juneng, Liew
    Ahmed, Kamal
    Ismail, Tarmizi
    Nawaz, Nadeem
    ATMOSPHERIC RESEARCH, 2019, 221 : 1 - 11
  • [6] Explainable contextual anomaly detection using quantile regression forests
    Zhong Li
    Matthijs van Leeuwen
    Data Mining and Knowledge Discovery, 2023, 37 : 2517 - 2563
  • [7] Explainable contextual anomaly detection using quantile regression forests
    Li, Zhong
    van Leeuwen, Matthijs
    DATA MINING AND KNOWLEDGE DISCOVERY, 2023, 37 (06) : 2517 - 2563
  • [8] Predicting future failure times by using quantile regression
    Jorge Navarro
    Francesco Buono
    Metrika, 2023, 86 : 543 - 576
  • [9] Predicting future failure times by using quantile regression
    Navarro, Jorge
    Buono, Francesco
    METRIKA, 2023, 86 (05) : 543 - 576
  • [10] Non-crossing convex quantile regression
    Dai, Sheng
    Kuosmanen, Timo
    Zhou, Xun
    ECONOMICS LETTERS, 2023, 233