Time Series Quantile Regression Using Random Forests

被引:1
|
作者
Shiraishi, Hiroshi [1 ,3 ]
Nakamura, Tomoshige [2 ]
Shibuki, Ryotato [1 ]
机构
[1] Keio Univ, Dept Math, Yokohama, Kanagawa, Japan
[2] Juntendo Univ, Fac Hlth Data Sci, Bunkyo Ku, Tokyo, Japan
[3] Keio Univ, Dept Math, Yokohama, Kanagawa, Japan
基金
日本学术振兴会;
关键词
Quantile regression; random forest; nonlinear autoregressive model;
D O I
10.1111/jtsa.12731
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We discuss an application of Generalized Random Forests (GRF) proposed to quantile regression for time series data. We extended the theoretical results of the GRF consistency for i.i.d. data to time series data. In particular, in the main theorem, based only on the general assumptions for time series data and trees, we show that the tsQRF (time series Quantile Regression Forest) estimator is consistent. Compare with existing article, different ideas are used throughout the theoretical proof. In addition, a simulation and real data analysis were conducted. In the simulation, the accuracy of the conditional quantile estimation was evaluated under time series models. In the real data using the Nikkei Stock Average, our estimator is demonstrated to capture volatility more efficiently, thus preventing underestimation of uncertainty.
引用
收藏
页码:639 / 659
页数:21
相关论文
共 50 条
  • [1] Causal Random Forests Model Using Instrumental Variable Quantile Regression
    Chen, Jau-er
    Hsiang, Chen-Wei
    [J]. ECONOMETRICS, 2019, 7 (04)
  • [2] Estimation of suspended sediment concentration and yield using linear models, random forests and quantile regression forests
    Francke, T.
    Lopez-Tarazon, J. A.
    Schroeder, B.
    [J]. HYDROLOGICAL PROCESSES, 2008, 22 (25) : 4892 - 4904
  • [3] Quantile regression forests
    Meinshausen, Nicolai
    [J]. JOURNAL OF MACHINE LEARNING RESEARCH, 2006, 7 : 983 - 999
  • [4] Random Forests for Time Series
    Goehry, Benjamin
    Yan, Hui
    Goude, Yannig
    Massart, Pascal
    Poggi, Jean-Michel
    [J]. REVSTAT-STATISTICAL JOURNAL, 2023, 21 (02) : 283 - 302
  • [5] Bayesian quantile regression using random B-spline series prior
    Das, Priyam
    Ghosal, Subhashis
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2017, 109 : 121 - 143
  • [6] Predicting Pedestrian Crossing using Quantile Regression Forests
    Voelz, Benjamin
    Mielenz, Holger
    Siegwart, Roland
    Nieto, Juan
    [J]. 2016 IEEE INTELLIGENT VEHICLES SYMPOSIUM (IV), 2016, : 426 - 432
  • [7] Ampacity forecasting: an approach using Quantile Regression Forests
    Molinar, Gabriela
    Fan, Lintao Toni
    Stork, Wilhelm
    [J]. 2019 IEEE POWER & ENERGY SOCIETY INNOVATIVE SMART GRID TECHNOLOGIES CONFERENCE (ISGT), 2019,
  • [8] Modeling of time series using random forests: Theoretical developments
    Davis, Richard A.
    Nielsen, Mikkel S.
    [J]. ELECTRONIC JOURNAL OF STATISTICS, 2020, 14 (02): : 3644 - 3671
  • [9] A SMOOTH BLOCK BOOTSTRAP FOR QUANTILE REGRESSION WITH TIME SERIES
    Gregory, Karl B.
    Lahiri, Soumendra N.
    Nordman, Daniel J.
    [J]. ANNALS OF STATISTICS, 2018, 46 (03): : 1138 - 1166
  • [10] Prediction of heat waves in Pakistan using quantile regression forests
    Khan, Najeebullah
    Shahid, Shamsuddin
    Juneng, Liew
    Ahmed, Kamal
    Ismail, Tarmizi
    Nawaz, Nadeem
    [J]. ATMOSPHERIC RESEARCH, 2019, 221 : 1 - 11