Optimizing two-level hierarchical particles for thin-film solar cells

被引:13
|
作者
Zhou, Shiwei [1 ]
Hunang, Xiaodong [1 ]
Li, Qing [2 ]
Xie, Yi Min [1 ]
机构
[1] RMIT Univ, Sch Civil Environm & Chem Engn, Ctr Innovat Struct & Mat, GPO Box 2476, Melbourne, Vic 3001, Australia
[2] Univ Sydney, Sch Aerosp Mech & Mechatron Engn, Sydney, NSW 2006, Australia
来源
OPTICS EXPRESS | 2013年 / 21卷 / 05期
基金
澳大利亚研究理事会;
关键词
AMORPHOUS-SILICON; OPTIMIZATION; ENHANCEMENT; EVOLUTION; COUPLER;
D O I
10.1364/OE.21.00A285
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
For the thin-film solar cells embedded with nanostructures at their rear dielectric layer, the shape and location of the nanostructures are crucial for higher conversion efficiency. A novel two-level hierarchical nanostructure (a sphere evenly covered with half truncated smaller spheres) can facilitate stronger intensity and wider scattering angles due to the coexistence of the merits of the nanospheres in two scales. We show in this article that the evolutionary algorithm allows for obtaining the optimal parameters of this two-scale nanostructure in terms of the maximization of the short circuit current density. In comparison with the thin-film solar cells with convex and flat metal back, whose parameters are optimized singly, the short circuit current density is improved by 7.48% and 10.23%, respectively. The exploration of such a two-level hierarchical nanostructure within an optimization framework signifies a new domain of study and allows to better identify the role of sophisticated shape in light trapping in the absorbing film, which is believed to be the main reason for the enhancement of short circuit current density. (C) 2013 Optical Society of America
引用
收藏
页码:A285 / A294
页数:10
相关论文
共 50 条
  • [31] Stability of thin-film silicon solar cells
    Stiebig, H.
    Reetz, W.
    Zahren, C.
    Repmann, T.
    Rech, B.
    CONFERENCE RECORD OF THE 2006 IEEE 4TH WORLD CONFERENCE ON PHOTOVOLTAIC ENERGY CONVERSION, VOLS 1 AND 2, 2006, : 1521 - +
  • [32] THIN-FILM HETEROJUNCTION SOLAR-CELLS
    ROMEO, N
    MATERIALS CHEMISTRY, 1979, 4 (03): : 571 - 590
  • [33] Microcrystalline silicon thin-film solar cells
    Hayakawa, Takashi
    Nasuno, Yoshiyuki
    Kondo, Michio
    Matsuda, Akihisa
    Shapu Giho/Sharp Technical Journal, 2002, (83): : 45 - 48
  • [34] Material constraints for thin-film solar cells
    Inst. of Physical Resource Theory, Chalmers University of Technology, Göteborg University, S-412 96 Göteborg, Sweden
    Energy, 5 (407-411):
  • [35] Antimony selenide thin-film solar cells
    Zeng, Kai
    Xue, Ding-Jiang
    Tang, Jiang
    SEMICONDUCTOR SCIENCE AND TECHNOLOGY, 2016, 31 (06)
  • [36] Modelling of multilayer thin-film solar cells
    Brecl, K.
    Smole, F.
    Furlan, J.
    Progress in Photovoltaics: Research and Applications, 7 (06): : 449 - 456
  • [37] AMORPHOUS THIN-FILM SOLAR-CELLS
    KRUHLER, W
    APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 1991, 53 (01): : 54 - 61
  • [38] Locally contacted thin-film solar cells
    Brammer, T
    Hüpkes, J
    Krause, M
    Kluth, O
    Müller, J
    Stiebig, H
    Rech, B
    PROCEEDINGS OF 3RD WORLD CONFERENCE ON PHOTOVOLTAIC ENERGY CONVERSION, VOLS A-C, 2003, : 176 - 179
  • [39] TECHNOLOGY OF THIN-FILM SOLAR-CELLS
    HEWIG, GH
    BLOSS, WH
    THIN SOLID FILMS, 1977, 45 (01) : 1 - 7
  • [40] Carbon Nanotubes in Thin-Film Solar Cells
    Shastry, Tejas A.
    Hersam, Mark C.
    ADVANCED ENERGY MATERIALS, 2017, 7 (10)