Parameter-Dependent Stochastic Optimal Control in Finite Discrete Time

被引:2
|
作者
Jamneshan, Asgar [1 ]
Kupper, Michael [2 ]
Zapata-Garcia, Jose Miguel [2 ]
机构
[1] Univ Calif Los Angeles, Dept Math, Los Angeles, CA 90024 USA
[2] Univ Konstanz, Dept Math & Stat, Constance, Germany
关键词
Conditional analysis; Stochastic optimal control; Conditional metric spaces; INCOMPLETE MARKETS; DUALITY; OPTIMIZATION; CONSUMPTION; RECOURSE;
D O I
10.1007/s10957-020-01711-z
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We prove a general existence result in stochastic optimal control in discrete time, where controls, taking values in conditional metric spaces, depend on the current information and past decisions. The general form of the problem lies beyond the scope of standard techniques in stochastic control theory, the main novelty is a formalization in conditional metric space and the use of conditional analysis. We illustrate the existence result by several examples such as wealth-dependent utility maximization under risk constraints and utility maximization with a conditional dimension. We also provide a discussion as to how our methods compare to techniques based on random sets.
引用
收藏
页码:644 / 666
页数:23
相关论文
共 50 条
  • [31] Stochastic collocation method for computing eigenspaces of parameter-dependent operators
    Grubisic, Luka
    Saarikangas, Mikael
    Hakula, Harri
    NUMERISCHE MATHEMATIK, 2023, 153 (01) : 85 - 110
  • [32] Delay-dependent and parameter-dependent robust stability for discrete-time delayed uncertain singular systems
    Kim, Jong-Hae
    Transactions of the Korean Institute of Electrical Engineers, 2010, 59 (04): : 789 - 792
  • [33] Homogenous Polynomially Parameter-Dependent H∞ Filter Designs of Discrete-Time Fuzzy Systems
    Zhang, Huaguang
    Xie, Xiangpeng
    Tong, Shaocheng
    IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS, 2011, 41 (05): : 1313 - 1322
  • [34] Parameter-dependent Lyapunov function approach to stability analysis for discrete-time LPV systems
    Na, Wang
    Ke-You, Zhao
    2007 IEEE INTERNATIONAL CONFERENCE ON AUTOMATION AND LOGISTICS, VOLS 1-6, 2007, : 724 - 728
  • [35] Finite-time Control of Discrete-time Stochastic Systems
    Zhang Weihai
    Wang Yi
    Sun Huiying
    Li Meng
    PROCEEDINGS OF THE 29TH CHINESE CONTROL CONFERENCE, 2010, : 1091 - 1096
  • [36] Robust H∞ Control for Stochastic Time-Delay Systems with Markovian Jump Parameters via Parameter-Dependent Lyapunov Functionals
    Jianwei Xia
    Bo Song
    Junwei Lu
    Circuits, Systems & Signal Processing, 2008, 27 : 331 - 349
  • [37] Robust H∞ control for stochastic time-delay systems with Markovian jump parameters via parameter-dependent Lyapunov functionals
    Xia, Jianwei
    Song, Bo
    Lu, Junwei
    CIRCUITS SYSTEMS AND SIGNAL PROCESSING, 2008, 27 (03) : 331 - 349
  • [38] A PARAMETER-DEPENDENT RANDOM-WALK WITH A DISTORTION IN THE FINITE AREA
    DUKHOVNY, AM
    DOPOVIDI AKADEMII NAUK UKRAINSKOI RSR SERIYA A-FIZIKO-MATEMATICHNI TA TECHNICHNI NAUKI, 1984, (06): : 8 - 11
  • [39] Optimal reduced-order estimators for parameter-dependent systems
    Zlochevsky, A
    Halevi, Y
    JOURNAL OF GUIDANCE CONTROL AND DYNAMICS, 1999, 22 (06) : 846 - 851
  • [40] Optimal reduced-order estimators for parameter-dependent systems
    Technion, Israel Institute of Technology, 32000 Haifa, Israel
    J Guid Control Dyn, 6 (846-851):