Parameter-Dependent Stochastic Optimal Control in Finite Discrete Time

被引:2
|
作者
Jamneshan, Asgar [1 ]
Kupper, Michael [2 ]
Zapata-Garcia, Jose Miguel [2 ]
机构
[1] Univ Calif Los Angeles, Dept Math, Los Angeles, CA 90024 USA
[2] Univ Konstanz, Dept Math & Stat, Constance, Germany
关键词
Conditional analysis; Stochastic optimal control; Conditional metric spaces; INCOMPLETE MARKETS; DUALITY; OPTIMIZATION; CONSUMPTION; RECOURSE;
D O I
10.1007/s10957-020-01711-z
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We prove a general existence result in stochastic optimal control in discrete time, where controls, taking values in conditional metric spaces, depend on the current information and past decisions. The general form of the problem lies beyond the scope of standard techniques in stochastic control theory, the main novelty is a formalization in conditional metric space and the use of conditional analysis. We illustrate the existence result by several examples such as wealth-dependent utility maximization under risk constraints and utility maximization with a conditional dimension. We also provide a discussion as to how our methods compare to techniques based on random sets.
引用
收藏
页码:644 / 666
页数:23
相关论文
共 50 条
  • [1] Parameter-Dependent Stochastic Optimal Control in Finite Discrete Time
    Asgar Jamneshan
    Michael Kupper
    José Miguel Zapata-García
    Journal of Optimization Theory and Applications, 2020, 186 : 644 - 666
  • [2] Robust stabilization of discrete-time parameter-dependent systems: The finite precision problem
    Dussy, S
    PROCEEDINGS OF THE 35TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-4, 1996, : 3976 - 3981
  • [3] Guaranteed cost control for rational parameter-dependent discrete-time systems
    Trofino, A
    de Souza, CE
    PROCEEDINGS OF THE 41ST IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-4, 2002, : 1870 - 1875
  • [4] Optimal Finite Time Control for Discrete-Time Stochastic Dynamical Systems
    Lee, Junsoo
    Haddad, Wassim M.
    Lanchares, Manuel
    2022 AMERICAN CONTROL CONFERENCE, ACC, 2022, : 3500 - 3505
  • [5] Nonlinear optimal control for parameter-dependent polynomial nonlinear systems
    Zhao, Dan
    Wang, Jian Liang
    Liao, Fang
    Poh, Eng Kee
    2007 IEEE INTERNATIONAL CONFERENCE ON CONTROL AND AUTOMATION, VOLS 1-7, 2007, : 2298 - +
  • [6] PARAMETER-DEPENDENT TRANSITIONS AND THE OPTIMAL-CONTROL OF DYNAMICAL DISEASES
    RAPP, PE
    LATTA, RA
    MEES, AI
    BULLETIN OF MATHEMATICAL BIOLOGY, 1988, 50 (03) : 227 - 253
  • [7] NEAR-OPTIMAL CONTROL OF PARAMETER-DEPENDENT LINEAR PLANTS
    VETTER, WJ
    BALCHEN, JG
    POHNER, F
    INTERNATIONAL JOURNAL OF CONTROL, 1972, 15 (04) : 683 - &
  • [8] Memoryless parameter-dependent control strategy of stochastic strict-feedback time delay systems
    Liu, Liang
    Kong, Mengru
    Yin, Shen
    JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2023, 360 (04): : 2436 - 2456
  • [9] On finite time optimal control for discrete-time linear systems with parameter variation
    Fujimoto, Kenji
    Inoue, Teppei
    Maruyama, Shun
    2015 54TH IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2015, : 6524 - 6529
  • [10] Parameter-dependent integral on time scales
    Chunmei Zhang
    Ke Wang
    Indian Journal of Pure and Applied Mathematics, 2014, 45 : 139 - 164