In this study we compare different approaches to retrieve Cloud Top Height (CTH), Cloud Effective Emissivity (CEE), and the Cloud Particle Size (CPS) from aircraft high-spectral resolution infrared measurements. Two independent methods are used to infer CTH. One approach is based on a high spectral resolution version of the CO2 Slicing algorithm characterized by a statistically based selection of the optimal channel pairs. Another approach the Minimum Local Emissivity Variance algorithm (MLEV) takes advantage of high-resolution observations in the 8-12 micron region to simultaneously derive CTH and CEE. Once CTH has been retrieved a third method, based on the comparison between simulated and observed radiances, is used to infer CPS and CEE. Simulated radiances are computed for 18 microwindows between 8.5 and 12 microns. The cirrus scattering calculations are based on three-dimensional randomly oriented ice columns assuming six different particle size distributions. Multiple scattering calculations are performed for 26 different cloud optical thicknesses (COT) between 0 and 20. The simulated radiances are then compared to the observed radiances to infer COT and CPS for each spectral measurement. We applied these approaches to High-resolution Interferometer Sounder (HIS), National Polar-Orbiting Operational Environmental Satellite System Airborne Sounder Testbed-Interferometer (NAST-I) and Scanning-HIS (S-HIS) data. The preliminary results, consistent between the different algorithms, suggest that the high spectral resolution measurements improve the accuracy of the cloud property retrievals.