On Model-free Reinforcement Learning for Switched Linear Systems: A Subspace Clustering Approach

被引:0
|
作者
Li, Hao [1 ]
Chen, Hua [1 ]
Zhang, Wei [1 ]
机构
[1] Ohio State Univ, Dept Elect & Comp Engn, Columbus, OH 43210 USA
基金
美国国家科学基金会;
关键词
DISCRETE-TIME; TRACKING CONTROL; ALGORITHM;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we study optimal control of switched linear systems using reinforcement learning. Instead of directly applying existing model-free reinforcement learning algorithms, we propose a Q-learning-based algorithm designed specifically for discrete time switched linear systems. Inspired by the analytical results from optimal control literature, the Q function in our algorithm is approximated by a point-wise minimum form of a finite number of quadratic functions. An associated update scheme based on subspace clustering for such an approximation is also developed which preserves the desired structure during the training process. Numerical examples for both low-dimensional and high-dimensional switched linear systems are provided to demonstrate the performance of our algorithm.
引用
收藏
页码:123 / 130
页数:8
相关论文
共 50 条
  • [21] Model-Free Approach to Fair Solar PV Curtailment Using Reinforcement Learning
    Wei, Zhuo
    de Nijs, Frits
    Li, Jinhao
    Wang, Hao
    PROCEEDINGS OF THE 2023 THE 14TH ACM INTERNATIONAL CONFERENCE ON FUTURE ENERGY SYSTEMS, E-ENERGY 2023, 2023, : 14 - 21
  • [22] A Model-free Deep Reinforcement Learning Approach for Robotic Manipulators Path Planning
    Liu, Wenxing
    Niu, Hanlin
    Mahyuddin, Muhammad Nasiruddin
    Herrmann, Guido
    Carrasco, Joaquin
    2021 21ST INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION AND SYSTEMS (ICCAS 2021), 2021, : 512 - 517
  • [23] An extensible approach for real-time bidding with model-free reinforcement learning
    Cheng, Yin
    Zou, Luobao
    Zhuang, Zhiwei
    Liu, Jingwei
    Xu, Bin
    Zhang, Weidong
    NEUROCOMPUTING, 2019, 360 : 97 - 106
  • [24] A model-free deep reinforcement learning approach for control of exoskeleton gait patterns
    Rose, Lowell
    Bazzocchi, Michael C. F.
    Nejat, Goldie
    ROBOTICA, 2022, 40 (07) : 2189 - 2214
  • [25] Model-free Based Reinforcement Learning Control Strategy of Aircraft Attitude Systems
    Huang, Dingcui
    Hu, Jiangping
    Peng, Zhinan
    Chen, Bo
    Hao, Mingrui
    Ghosh, Bijoy Kumar
    2020 CHINESE AUTOMATION CONGRESS (CAC 2020), 2020, : 743 - 748
  • [26] Using Reinforcement Learning for Model-free Linear Quadratic Control with Process and Measurement Noises
    Yaghmaie, Farnaz Adib
    Gustafsson, Fredrik
    2019 IEEE 58TH CONFERENCE ON DECISION AND CONTROL (CDC), 2019, : 6510 - 6517
  • [27] Policy Learning with Constraints in Model-free Reinforcement Learning: A Survey
    Liu, Yongshuai
    Halev, Avishai
    Liu, Xin
    PROCEEDINGS OF THE THIRTIETH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, IJCAI 2021, 2021, : 4508 - 4515
  • [28] Improving Optimistic Exploration in Model-Free Reinforcement Learning
    Grzes, Marek
    Kudenko, Daniel
    ADAPTIVE AND NATURAL COMPUTING ALGORITHMS, 2009, 5495 : 360 - 369
  • [29] Model-Free Preference-Based Reinforcement Learning
    Wirth, Christian
    Fuernkranz, Johannes
    Neumann, Gerhard
    THIRTIETH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2016, : 2222 - 2228
  • [30] Constrained model-free reinforcement learning for process optimization
    Pan, Elton
    Petsagkourakis, Panagiotis
    Mowbray, Max
    Zhang, Dongda
    del Rio-Chanona, Ehecatl Antonio
    COMPUTERS & CHEMICAL ENGINEERING, 2021, 154